In: Statistics and Probability
Table 2 shows two random independent samples of stock return over 10 years’ time. Assume the rate of return ?? for stock A and ?? for stock B are normally distributed with population standard deviation ?? = 0.01 and ?? = 0.02 respectively. To investigate whether the average rate of return for stock A different from the average rate of return for stock B, please answer the following questions.
| 
 Stock A  | 
 Stock B  | 
|
| 
 Year 1  | 
 0.04  | 
 0.11  | 
| 
 Year 2  | 
 0.07  | 
 0.08  | 
| 
 Year 3  | 
 0.08  | 
 0.12  | 
| 
 Year 4  | 
 0.13  | 
 0.09  | 
| 
 Year 5  | 
 0.06  | 
 0.05  | 
| 
 Year 6  | 
 0.05  | 
 0.03  | 
| 
 Year 7  | 
 0.05  | 
 0.06  | 
| 
 Year 8  | 
 0.12  | 
 0.10  | 
| 
 Year 9  | 
 0.09  | 
 0.07  | 
| 
 Year 10  | 
 0.03  | 
 004  | 
a)
Ho :   µ1 - µ2 =   0
Ha :   µ1-µ2 ╪   0
b) two mean independnet sample Z test , distribution is normal
c) mean of sample 1, x̅A= 0.072
mean of sample 2, x̅B= 0.075
d)
difference in sample means = x̅1 - x̅2 =   
0.072   -   0.075   =  
-0.003
          
       
std error , SE =    √(σ1²/n1+σ2²/n2) =   
0.0071          
          
       
Z-statistic = ((x̅1 - x̅2)-µd)/SE =   
-0.003   /   0.0071   =  
-0.42
          
       
e) Z-critical value , Z* = ± 1.6449 [excel formula =NORMSINV(α/2)]
f) test stat > -1.645 , fail to reject Ho
There is no enough evidence to conclude that the average rate of return for stock A different from the average rate of return for stock B,