Question

In: Math

Solve the following initial value problem. x2y′′ + 19xy′ + 85y  =  0,    y(1)  =  8,  y′(1)  ...

Solve the following initial value problem.

x2y′′ + 19xy′ + 85y  =  0,    y(1)  =  8,  y(1)  =  6

Solutions

Expert Solution


Related Solutions

Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0)...
Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0) = 0, y''(0) = 0.
11. Solve numerically the following Boundary Value Problem. X2Y” – X(X+2)Y’ + (X+2)Y = 0 Y(1)...
11. Solve numerically the following Boundary Value Problem. X2Y” – X(X+2)Y’ + (X+2)Y = 0 Y(1) = e and Y(2) = 2e2 The value of e = 2.71828
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
Solve the initial value problem: y''' - 12y'' + 48y' - 72y = 0 ; y(0)...
Solve the initial value problem: y''' - 12y'' + 48y' - 72y = 0 ; y(0) = 1, y'(0) = 0, y''(0) = 0
Solve the given initial-value problem. y′′′ + 18y′′ + 81y′ = 0, y(0) = 0, y′(0)...
Solve the given initial-value problem. y′′′ + 18y′′ + 81y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = −10.
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it...
Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it analytically. (b) Solve it using Euler’s method using step size h = 0.1 and find an approximation to true solution at x = 0.3. (c) What is the error in the Euler’s method at x = 0.3
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT