Suppose X and Y have joint probability density function f(x,y) =
6(x-y) when 0<y<x<1 and f(x,y) = 0 otherwise.
(a) Indicate with a sketch the sample space in the x-y plane
(b) Find the marginal density of X, fX(x)
(c) Show that fX(x) is properly normalized, i.e., that it
integrates to 1 on the sample space of X
(d) Find the marginal density of Y, fY(y)
(e) Show that fY(y) is properly normalized, i.e., that it
integrates to 1 on...