In: Statistics and Probability
. An instructor has given a short quiz consisting of two parts. For a randomly selected student, let X represent the number of points earned on the first part and let Y represent the number of points earned on the second part. Suppose that the joint pmf of X and Y is given in the table below. Y 0 5 10 15 0 0.11 0.07 0.05 0.12 X 5 0.07 0.14 0.09 0.07 10 0.06 0.10 0.04 0.08 (a) (3Calculate P(X ≥ Y ). (b) (4 points) Find the conditional distribution of P(Y |X = 10)
PMF of X and Y
P(x,y) | X | ||
Y | 0 | 5 | 10 |
0 | 0.11 | 0.07 | 0.06 |
5 | 0.07 | 0.14 | 0.1 |
10 | 0.05 | 0.09 | 0.04 |
15 | 0.12 | 0.07 | 0.08 |
(a) P(XY)
XY is true only for the following events
For X = 0 ; Y=0 ; P(X=0,Y=0) = 0.11
For X=5; Y=0 ; P(X=5,Y=0) = 0.07 ; X=5, Y=5 ; P(X=5,Y=5) = 0.14
For X=10, Y=0 ; P(X=10,Y=0) = 0.06 ; X=10, Y=5 ; P(X=10,Y=5) = 0.1 ; P(X=10,Y=10) = 0.04
P(XY) = P(X=0,Y=0) + P(X=5,Y=0) + P(X=5,Y=5) + P(X=10,Y=0)+P(X=10,Y=5)+P(X=10,Y=10)
= 0.11+0.07+0.14+0.06+0.1+0.04 = 0.52
P(XY) = 0.52
(b) Conditional Distribution of P(Y|X=10)
PX(10) : Marginal Distribution of X for X=10
For Y=0;
For Y=5
For Y=10
For Y=15
Y | P(Y|X=10) |
0 | 0.214285714 |
5 | 0.357142857 |
10 | 0.142857143 |
15 | 0.285714286 |