In: Statistics and Probability
. An instructor has given a short quiz consisting of two parts. For a randomly selected student, let X represent the number of points earned on the first part and let Y represent the number of points earned on the second part. Suppose that the joint pmf of X and Y is given in the table below. Y 0 5 10 15 0 0.11 0.07 0.05 0.12 X 5 0.07 0.14 0.09 0.07 10 0.06 0.10 0.04 0.08 (a) (3Calculate P(X ≥ Y ). (b) (4 points) Find the conditional distribution of P(Y |X = 10)
PMF of X and Y
| P(x,y) | X | ||
| Y | 0 | 5 | 10 |
| 0 | 0.11 | 0.07 | 0.06 |
| 5 | 0.07 | 0.14 | 0.1 |
| 10 | 0.05 | 0.09 | 0.04 |
| 15 | 0.12 | 0.07 | 0.08 |
(a) P(X
Y)
X
Y
is true only for the following events
For X = 0 ; Y=0 ; P(X=0,Y=0) = 0.11
For X=5; Y=0 ; P(X=5,Y=0) = 0.07 ; X=5, Y=5 ; P(X=5,Y=5) = 0.14
For X=10, Y=0 ; P(X=10,Y=0) = 0.06 ; X=10, Y=5 ; P(X=10,Y=5) = 0.1 ; P(X=10,Y=10) = 0.04
P(X
Y)
= P(X=0,Y=0) + P(X=5,Y=0) + P(X=5,Y=5) +
P(X=10,Y=0)+P(X=10,Y=5)+P(X=10,Y=10)
= 0.11+0.07+0.14+0.06+0.1+0.04 = 0.52
P(X
Y)
= 0.52
(b) Conditional Distribution of P(Y|X=10)

PX(10) : Marginal Distribution of X for X=10

For Y=0;

For Y=5

For Y=10

For Y=15

| Y | P(Y|X=10) |
| 0 | 0.214285714 |
| 5 | 0.357142857 |
| 10 | 0.142857143 |
| 15 | 0.285714286 |