Question

In: Statistics and Probability

Consider the accompanying data examining the heights and arm spans of randomly selected students. Complete parts...

Consider the accompanying data examining the heights and arm spans of randomly selected students. Complete parts a through g below.

Height_(cm)

Arm_Span_(cm)

179

170

169

179

150

153

175

170

178

153

200

188

161

147

160

151

175

157

173

199

Rsquared=32.6%

s=2.56

constant=39.215

height 0.741

a) Write the regression equation. Define the variables used in your equation.

Arm Span (cm)=_____+_____•( Height(cm))

b) f a student is 165 cm​ tall, what is his predicted Arm​ Span?

c)f this 165 cm tall student has an actual Arm Span of 161cm, what is the value of the​ residual? Does he have shorter or longer arms than​ predicted?

residual is ____

d)If a student has a residual of 6cm and a Height of 158cm, what is his actual arm​ span?

e)State and interpret the UpperR2 value in context.

The R2 value is_____. This means that ______of the variation in Arm Span is explained successfully by using ___.

Solutions

Expert Solution


Related Solutions

The table below shows the arm spans (in inches) and the heights (in inches) of 10...
The table below shows the arm spans (in inches) and the heights (in inches) of 10 randomly selected people. Arm Span, x 51 52 56 49 54 59 58 55 52 56 Height, y 51 53 54 50 55 57 58 57 52 56 1) Construct the 1% confidence interval for the population slope β 1 . Make sure your answers follow the rounding rule in the direction. Lower endpoint = Upper endpoint = 2) Fill in the blanks in...
The table below shows the arm spans (in inches) and the heights (in inches) of 10...
The table below shows the arm spans (in inches) and the heights (in inches) of 10 randomly selected people. Arm Span, x 51 52 56 49 54 59 58 55 52 56 Height, y 51 53 54 50 55 57 58 57 52 56 What is the point estimate for the mean height of all people whose arm span is exactly 53 inches? Make sure your answer follows the rounding rule MUST ROUND TO SIX DECIMAL PLACES
The table below shows the arm spans (in inches) and the heights (in inches) of 10...
The table below shows the arm spans (in inches) and the heights (in inches) of 10 randomly selected people. Arm Span, x 51 52 56 49 54 59 58 55 52 56 Height, y 51 53 54 50 55 57 58 57 52 56 Perform a test, at the 5% level of significance, for the population slope β 1 of the regression line. H0: Ha: t-Test Statistic (round this value to three decimal places) = Critical t-Score (t α or...
The table below shows the arm spans (in inches) and the heights (in inches) of 10...
The table below shows the arm spans (in inches) and the heights (in inches) of 10 randomly selected people. Arm Span, x 51 52 56 49 54 59 58 55 52 56 Height, y 51 53 54 50 55 57 58 57 52 56 1) Construct the 1% confidence interval for the population slope β 1. Make sure your answers follow the rounding rule in the direction. Lower endpoint = Upper endpoint = 2) Fill in the blanks in the...
The following data shows self reported heights and measured heights (in inches) for 8 randomly selected...
The following data shows self reported heights and measured heights (in inches) for 8 randomly selected teenage girls. Is there sufficient evidence, at a 0.05 significance levelto sugest that there is a difference between self reported and measured height? Reported 53,64, 61, 66, 64, 65, 68, 63 Measured 58.1 62.7 61.1 64.8 63.2 66.4 67.6 63.5
The paired data below consists of heights and weights of 6 randomly selected adults. The equation...
The paired data below consists of heights and weights of 6 randomly selected adults. The equation of the regression line is y-hat = -181.342 + 144.46x and the standard error of estimate is se=5.0015. Find the 95% prediction interval for the weight of a person whose height is 1.75 m. x height (meters) y weight (kg) 1.61 54 1.72 62 1.78 70 1.80 84 1.67 61 1.88 92
The accompanying data represent the total compensation for 12 randomly selected chief executive officers​ (CEO) and...
The accompanying data represent the total compensation for 12 randomly selected chief executive officers​ (CEO) and the​ company's stock performance in a recent year. Complete parts​ (a) through​ (d) below. LOADING... Click the icon to view the CEO data. ​(a) One would think that a higher stock return would lead to a higher compensation. Based on​ this, what would likely be the explanatory​ variable? Stock return Compensation ​(b) Draw a scatter diagram of the data. Use the result from part​...
The accompanying data represent the total compensation for 12 randomly selected chief executive officers​ (CEOs) and...
The accompanying data represent the total compensation for 12 randomly selected chief executive officers​ (CEOs) and the​ company's stock performance. Company   Compensation   Return A   14.98   74.48 B   4.61   63.62 C   6.15   148.21 D   1.11   30.35 E   1.54   11.94 F   3.28   29.09 G   11.06   0.64 H   7.77   64.16 I   8.23   50.41 J   4.47   53.19 K   21.39   21.94 L   5.23   33.68 ​(a) Treating compensation as the explanatory​ variable, x, use technology to determine the estimates of β0 and β1. The estimate of...
The accompanying data represent the total compensation for 12 randomly selected chief executive officers​ (CEOs) and...
The accompanying data represent the total compensation for 12 randomly selected chief executive officers​ (CEOs) and the​ company's stock performance. Company   Compensation   Return A   14.98   74.48 B   4.61   63.62 C   6.15   148.21 D   1.11   30.35 E   1.54   11.94 F   3.28   29.09 G   11.06   0.64 H   7.77   64.16 I   8.23   50.41 J   4.47   53.19 K   21.39   21.94 L   5.23   33.68 ​(a) Treating compensation as the explanatory​ variable, x, use technology to determine the estimates of β0 and β1. The estimate of...
The data in the accompanying table represent the heights and weights of a random sample of...
The data in the accompanying table represent the heights and weights of a random sample of professional baseball players. Complete parts ​(a) through ​(c) below. Player   Height_(inches)   Weight_(pounds) Player_1   76   227 Player_2   75   197 Player_3   72   180 Player_4   82   231 Player_5   69   185 Player_6   74   190 Player_7   75   228 Player_8   71   200 Player_9   75   230 (b) Determine the​ least-squares regression line. Test whether there is a linear relation between height and weight at the alphaαequals=0.05 level of significance. Determine the​...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT