Question

In: Mechanical Engineering

A gas undergoes a process from state 1, where p1 = 60 lbf/in.2, v1 = 6.0...

A gas undergoes a process from state 1, where p1 = 60 lbf/in.2, v1 = 6.0 ft3/lb, to state 2 where p2 = 99.6 lbf/in.2, according to pv1.3 = constant. The relationship between pressure, specific volume, and internal energy is u = (0.2651)pv - 95.436
where p is in lbf/in.2, v is in ft3/lb, and u is in Btu/lb. The mass of gas is 10 lb. Neglecting kinetic and potential energy effects, determine the heat transfer, in Btu.

Solutions

Expert Solution


Related Solutions

Five kmol of oxygen (O2) gas undergoes a process in a closed system from p1 =...
Five kmol of oxygen (O2) gas undergoes a process in a closed system from p1 = 50 bar, T1 = 170 K to p2 = 25 bar, T2 = 308 K. Determine the change in volume, in m3.
A gas undergoes an isothermal expansion from V1=1.4L followed by isobaric compression, p=cst. if p1=4.4atm, p2=2.2atm→?Nm2,...
A gas undergoes an isothermal expansion from V1=1.4L followed by isobaric compression, p=cst. if p1=4.4atm, p2=2.2atm→?Nm2, calculate the total work done by the gas. Hint: W=∫dW=∫pdV=∫nRTVdV
A system consists of 2 kg of carbon dioxide gas initially at state 1, where p1...
A system consists of 2 kg of carbon dioxide gas initially at state 1, where p1 = 1 bar, T1 = 300 K. The system undergoes a power cycle consisting of the following processes: Process 1–2: Constant volume to p2 = 2 bar. Process 2–3: Expansion with pv1.4 = constant. Process 3–1: Constant-pressure compression. Assuming the ideal gas model and neglecting kinetic and potential energy effects, calculate thermal efficiency.
A system consists of 2 kg of carbon dioxide gas initially at state 1, where p1...
A system consists of 2 kg of carbon dioxide gas initially at state 1, where p1 = 1 bar, T1 = 300 K. The system undergoes a power cycle consisting of the following processes: Process 1–2: Constant volume to p2 = 4 bar. Process 2–3: Expansion with pv1.4 = constant. Process 3–1: Constant-pressure compression. Assuming the ideal gas model and neglecting kinetic and potential energy effects, calculate thermal efficiency.
An ideal gas undergoes an isothermal expansion from one state to another.  In this process determine the...
An ideal gas undergoes an isothermal expansion from one state to another.  In this process determine the following (using the sign conventions on page 413): Q = 0, Q > 0 or Q < 0 W = 0, W > 0 or W < 0 ΔU = 0, ΔU > 0 or ΔU < 0 An ideal gas undergoes an isothermal process.  Which of the following are true (may be more than one):  a) No heat is added or removed from the gas,...
Air expands through a turbine operating at steady state. At the inlet, p1 = 150 lbf/in.2,...
Air expands through a turbine operating at steady state. At the inlet, p1 = 150 lbf/in.2, T1 = 1400°R, and at the exit, p2 = 14.8 lbf/in.2, T2 = 900°R. The mass flow rate of air entering the turbine is 11 lb/s, and 65,000 Btu/h of energy is rejected by heat transfer. Neglecting kinetic and potential energy effects, determine the power developed, in hp.
Air expands through a turbine operating at steady state. At the inlet, p1 = 150 lbf/in.2,...
Air expands through a turbine operating at steady state. At the inlet, p1 = 150 lbf/in.2, T1 = 1400°R, and at the exit, p2 = 14.8 lbf/in.2, T2 = 900°R. The mass flow rate of air entering the turbine is 5 lb/s, and 65,000 Btu/h of energy is rejected by heat transfer. Neglecting kinetic and potential energy effects, determine the power developed, in hp.
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a...
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a final pressure of 2200 lbf/in.2 Kinetic and potential energy effects are negligible. Determine the heat transfer, in Btu per lb of steam, for a polytropic exponent of 1.4, (a) using data from the steam tables. (b) assuming ideal gas behavior.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 7 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.4, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.2, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT