In: Physics
The bottom of a steel "boat" is a 3 m ? 22 m ? 2 cm piece of steel (?steel = 7900 kg/m3). The sides are made of 2.00 cm thick steel. What minimum height must the sides have for this boat to float in perfectly calm water?
volume of the steel boat, V_boat = 3m*22m*0.02m
density of the steel, rho_steel = 7900 kg/m^3
side thickness, t= 2 cm
let, height of the boat be h,
volume of the water displaced,V_displaced = (3*22*(h+0.02) m^3
mass of the dispaced water, m= rho_water*V_displaced =1000*3*22*(h+0.02)-----(1)
and volume of the steel in boat is,
v=V_boat+V_object = (3*22*0.02) + (2*(3*h*t)+ 2*(22*h*t))
V= 3*22*0.02+ 2*(3*h*0.02)+2*(22*h*0.02)
and
mass of the steel , m_steel=rho_steel*V
m_steel= 7900*(3*22*0.02+ 2*(3*h*0.02)+2*(22*h*0.02)) ---(2)
from Buoyancy principle,
mass of the dispaced water=mass of the steel
1000*3*22*(h+0.02)=7900*(3*22*0.02+ 2*(3*h*0.02)+2*(22*h*0.02))
=> h = 0.157 m
therefore , height, h = 0.157 m