In: Chemistry
Determine [Zn2+], [CN−], and [HCN] in a saturated solution of Zn(CN)2 with a fixed pH of 3.530. The ?sp for Zn(CN)2 is 3.0×10−16. The ?a for HCN is 6.2×10−10.
[Zn2+]=
[HCN]=
[CN−]
Given pH = - log[H+(aq)] = 3.530
=> log[H+(aq)] = - 3.530
=> [H+(aq)] = 10-3.530
=> [H+(aq)] = 2.95×10-4 M
The balanced equations involved are:
Zn(CN)2(s) < -----> Zn2+(aq) + 2CN-(aq) ; Ksp = 3.0×10-16
2CN-(aq) + 2H+(aq) <-----> 2HCN(aq) ; K = (1/Ka)2 = (1/6.2×10-10)2 = 2.60*1018
---------------------------------------------------------------------------------------------------------------
Adding the above two equation gives:
Zn(CN)2(s) + 2CN-(aq) + 2H+(aq)< -----> Zn2+(aq) + 2CN-(aq) + 2HCN(aq) ; K" = Ksp * K
cancelling spectator ions:
--Zn(CN)2(s) + 2H+(aq)< -----> Zn2+(aq) + 2HCN(aq) ; K" = Ksp * K = 3.0×10-16 * 2.60*1018 = 780.44
I: ---------------- 2.95×10-4 M --------------------------------
C: ------------------------------------- +X --------- +2X
E: ---------------2.95×10-4 M ------ X M ------- 2X M
K" = 780.44 = [Zn2+(aq)] * [HCN(aq)]2 / [H+(aq)]2
=> K" = 780.44 = X * X2 / [2.95×10-4]2
=> 780.44 * [2.95×10-4]2 = X3
=> X = cube root (6.79×10-5) = 0.0408 M
Hence [Zn2+(aq)] = X = 0.0408 M (Answer)
[HCN(aq)] = 2X = 2*0.0408 M = 0.0816 M (Answer)
For HCN dissociation:
--HCN(aq) <----> CN-(aq) + H+(aq) ; K = 6.2×10-10
E: 0.0816 M ------ ?? --------2.95×10-4
K = 6.2×10-10 = [CN-(aq)] *[H+(aq)] / [HCN(aq)]
=> 6.2×10-10 = [CN-(aq)] * 2.95×10-4 / 0.0816
=> [CN-(aq)] = 1.71*10-7 M (Answer)