Question

In: Computer Science

# O W L S f(O,W,L,S) 0 0 0 0 0 0 1 0 0 0...

#

O

W

L

S

f(O,W,L,S)

0

0

0

0

0

0

1

0

0

0

1

0

2

0

0

1

0

1

3

0

0

1

1

1

4

0

1

0

0

0

5

0

1

0

1

1

6

0

1

1

0

1

7

0

1

1

1

X

8

1

0

0

0

0

9

1

0

0

1

0

10

1

0

1

0

0

11

1

0

1

1

1

12

1

1

0

0

0

13

1

1

0

1

1

14

1

1

1

0

1

15

1

1

1

1

X

A)Show the sum-of-product, simplified (normalized) equation, using the Don’t Care cases. This time, there should only be one equation.

1)Draw the sum-of-products version of the circuit for part A

2)Draw the NAND version of the circuit from Problem A

3)Fill in the Truth Table from the equation in problem

#

O

W

L

S

EQ3.6

0

0

0

0

0

1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

4

0

1

0

0

5

0

1

0

1

6

0

1

1

0

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

10

1

0

1

0

11

1

0

1

1

12

1

1

0

0

13

1

1

0

1

14

1

1

1

0

15

1

1

1

1

Solutions

Expert Solution

1) Given Function is

f (O, W, L, S) = ​ m (2, 3, 5, 6, 11, 13, 14) + d(7, 15)

Above Function in K-map as follows


Simplified K-map as follows

The Simplified SOP of F (O, W, L, S) = O’L+LS+WL+WS

2) Given f = O’L+LS+WL+WS

[f ']' = [(O’L+LS+WL+WS)']'  { We know that (P')'= P }

f = [(O’L)'(LS)'(WL)'(WS)']' { We know that (P+Q)'= P' Q' }

f = [(O’L)'(LS)'(WL)'(WS)']'

Simplified Circuit: Using NAND gates only

Explanation:
NAND gate is used to find the Product of Two literals P NAND Gate Q Output is (PQ)'

3)Truth Table: Given f (O, W, L, S) = O’L+LS+WL+WS

S.NO

    O

    W

    L

    S

    O’

O’L

LS

    WL

    WS

  f = O’L+LS+WL+WS

F    0

    0

    0

    0

    0

    1

    0

    0

    0

    0

    0

    1

    0

    0

    0

    1

    1

    0

    0

    0

    0

    0

    2

    0

    0

    1

    0

    1

    1

    0

    0

    0

    1

    3

    0

    0

    1

    1

    1

    1

    1

    0

    0

    1

    4

    0

    1

    0

    0

    1

    0

    0

    0

    0

    0

    5

    0

    1

    0

    1

    1

    0

    0

    0

    1

    1

    6

    0

    1

    1

    0

    1

    1

    0

    1

    0

    1

    7

    0

    1

    1

    1

    1

    1

    1

    1

    1

    X

    8

    1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    9

    1

    0

    0

    1

    0

    0

    0

    0

    0

    0

    10

    1

    0

    1

    0

    0

    0

    0

    0

    0

    0

    11

    1

    0

    1

    1

    0

    0

    1

    0

    0

    1

    12

    1

    1

    0

    0

    0

    0

    0

    0

    0

    0

    13

    1

    1

    0

    1

    0

    0

    0

    0

    1

    1

    14

    1

    1

    1

    0

    0

    0

    0

    1

    0

    1

    15

    1

    1

    1

    1

    0

    0

    1

    1

    1

    X


Related Solutions

L= {w belongs to {0,1}* | the number of 0's is a prime number} . Prove...
L= {w belongs to {0,1}* | the number of 0's is a prime number} . Prove that the language L is not regular.
Find the Laplace transforms: F(s)=L{f(t)} of the function f(t)=(8−t)(u(t−2)−u(t−5)), for s≠0. F(s)=L{f(t)}=
Find the Laplace transforms: F(s)=L{f(t)} of the function f(t)=(8−t)(u(t−2)−u(t−5)), for s≠0. F(s)=L{f(t)}=
Show that W = {f : R → R : f(1) = 0} together with usual...
Show that W = {f : R → R : f(1) = 0} together with usual addition and scalar multiplication forms a vector space. Let g : R → R and define T : W → W by T(f) = gf. Show that T is a linear transformation.
Let L ⊆ Σ ∗ and define S(L), the suffix-language of L, as S(L) = {w...
Let L ⊆ Σ ∗ and define S(L), the suffix-language of L, as S(L) = {w ∈ Σ ∗ | x = yw for some x ∈ L, y ∈ Σ ∗ } Show that if L is regular, then S(L) is also regular.
Create a DFA for L = {wwR|w ∈ {0, 1}∗}. WR represents the reverse of the...
Create a DFA for L = {wwR|w ∈ {0, 1}∗}. WR represents the reverse of the string. Explain your answer.
1. Let g(s) = √ s. Find a simple function f so that f(g(s)) = 0....
1. Let g(s) = √ s. Find a simple function f so that f(g(s)) = 0. Hint: see Methods of computing square roots on Wikipedia. Use Newton’s method to estimate √ 2. Start with 3 different (and interesting) initial values of your choice and report the number of iterations it takes to obtain an accuracy of at least 4 digits. In python.
Find f(t) if L(f)=s/(s^2+16)^2.
Find f(t) if L(f)=s/(s^2+16)^2.
From 1+K*L(s)=0 L(s) = 1/((s+1)(s+2)(s+10)) Solve for gain K where the root locus passes through the...
From 1+K*L(s)=0 L(s) = 1/((s+1)(s+2)(s+10)) Solve for gain K where the root locus passes through the damping ratio. z=0.176. With out Matlab. Please show all work. Note: I know we need to use some trig and the magnitude criteria but u cannot seem to figure it out. Thank you!
Suppose Noah and Naomi's short-run weekly production function for garden benches is             F(L)=min{0,L−3},F(L)=min⁡{0,L−3},      where L...
Suppose Noah and Naomi's short-run weekly production function for garden benches is             F(L)=min{0,L−3},F(L)=min⁡{0,L−3},      where L represents the number of hours of labor employed. The wage rate is $12 an hour. For non-negative amounts of output, what is their short-run cost function? C = 36 + 12Q. C =12 +36Q. C =12Q. C = 36Q. C =36 - 12Q.
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2,...
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2, f(1, 0) = 3, f(1, 1) = 5, f(2, 0) = 5, f(2, 1) = 10. Determine the Lagrange interpolation F(x, y) that interpolates the above data. Use Lagrangian bi-variate interpolation to solve this and also show the working steps.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT