In: Statistics and Probability
Construct 90%, 95%, and 99% confidence intervals to estimate
μ from the following data. State the point estimate.
Assume the data come from a normally distributed
population.
13.6 | 11.6 | 11.9 | 13.0 | 12.5 | 11.4 | 12.0 |
11.7 | 11.8 | 13.6 |
(a)
From the given data, the following statistics are calculated:
n = 10
= 123.1/10 = 12.31
Point Estimate = 12.31
s = 0.8212
SE = s/
= 0.8212/
= 0.2597
= 0.10
ndf = n - 1 = 10 - 1 = 9
From Table, critical values of t = 1.8331
90% Confidence Interval:
12.31 (1.8331 X 0.2597)
= 12.31 0.4760
= ( 11.8340 ,12.7860)
90% Confidence Interval:
11.8340 < < 12.7860
(b)
= 0.05
ndf = n - 1 = 10 - 1 = 9
From Table, critical values of t = 2.2622
90% Confidence Interval:
12.31 (2.2622 X 0.2597)
= 12.31 0.5875
= ( 11.7225 ,12.8975)
95% Confidence Interval:
11.7225 < < 12.8975
(c)
= 0.01
ndf = n - 1 = 10 - 1 = 9
From Table, critical values of t = 3.2498
90% Confidence Interval:
12.31 (3.2498 X 0.2597)
= 12.31 0.8440
= ( 11.4660 ,13.1540)
99% Confidence Interval:
11.4660 < < 13.1540
So,
Answers to questions asked:
Point Estimate = 12.31
90% Confidence Interval:
11.8340 < < 12.7860
95% Confidence Interval:
11.7225 < < 12.8975
99% Confidence Interval:
11.4660 < < 13.1540