In: Statistics and Probability
Referring to this data:
2.58 2.51 4.04 6.43 1.58 4.32 2.2 4.19
4.79 6.2 1.52 1.38 3.87 4.54 5.12 5.15
5.5 5.92 4.56 2.46 6.9 1.47 2.11 2.32
6.75 5.84 8.8 7.4 4.72 3.62 2.46 8.75
Suppose we can only pass the quality test if there is evidence to suggest that the true mean ignition time is more than 0.04 seconds (or 4 hundredths of a second). please show work.
a. What is the null hypothesis for this test?
b. What is the alternative?
c. Conduct this hypothesis test at α=0.05 using the normal distribution. State all parts, including the critical value, test statistic, and conclusion in context of the problem.
d. Conduct this hypothesis test at α=0.05 using the t-distribution. State all parts, including the critical value, test statistic, and conclusion in context of the problem. Does your conclusion change?
Ho :   µ =   0.04  
           
   
Ha :   µ >   0.04  
    (Right tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
population std dev ,    σ =   
2.1040          
       
Sample Size ,   n =    32  
           
   
Sample Mean,    x̅ =   4.3750  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   2.1040   / √
   32   =   0.3719  
   
Z-test statistic= (x̅ - µ )/SE = (   4.375  
-   0.04   ) /    0.3719  
=   11.66
          
           
   
critical z value, z* =      
1.6449   [Excel formula =NORMSINV(α/no. of tails)
]          
   
          
           
         
Decision:   test stat > critical value, Reject null
hypothesis
.....................
d)
sample std dev ,    s =   
2.1040          
       
Sample Size ,   n =    32  
           
   
Sample Mean,    x̅ =   4.3750  
           
   
          
           
   
degree of freedom=   DF=n-1=   31  
           
   
          
           
   
Standard Error , SE = s/√n =   2.1040   / √
   32   =   0.3719  
   
t-test statistic= (x̅ - µ )/SE = (   4.375  
-   0.04   ) /    0.3719  
=   11.66
          
           
   
critical t value, t* =       
1.6955   [Excel formula =t.inv(α/no. of tails,df)
]          
   
          
           
         
Decision: test stat > critical value, Reject null hypothesis
      
.............
no change in conclusion
.................
THANKS
revert back for doubt
please upvote