In: Statistics and Probability
x |
3.1 |
3.2 |
3.7 |
4.0 |
4.0 |
5.5 |
6.7 |
7.4 |
7.4 |
10.6 |
y |
98.1 |
94.7 |
92.0 |
89.8 |
87.5 |
85.0 |
82.0 |
77.8 |
72.1 |
53.5 |
a)
Y=a+bx
Assumptions of Linear Regression
.................
b)
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 55.6 | 832.5 | 53.424 | 1532.9 | -278.69 |
mean | 5.56 | 83.25 | SSxx | SSyy | SSxy |
sample size , n = 10
here, x̅ = Σx / n= 5.56 ,
ȳ = Σy/n = 83.25
SSxx = Σ(x-x̅)² = 53.4240
SSxy= Σ(x-x̅)(y-ȳ) = -278.7
estimated slope , ß1 = SSxy/SSxx = -278.7
/ 53.424 = -5.2166
intercept, ß0 = y̅-ß1* x̄ =
112.2541
so, regression line is Ŷ =
112.25 + -5.22 *x
.............
c)
SSE= (SSxx * SSyy - SS²xy)/SSxx =
79.059
std error ,Se = √(SSE/(n-2)) =
3.144
confidence interval for slope
α= 0.05
t critical value= t α/2 =
2.306 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
3.14363 /√ 53.42 =
0.430
margin of error ,E= t*std error = 2.306
* 0.430 = 0.992
estimated slope , ß^ = -5.2166
lower confidence limit = estimated slope - margin of error
= -5.2166 - 0.992
= -6.2084
upper confidence limit=estimated slope + margin of error
= -5.2166 + 0.992
= -4.2248
...............
d)
Ho: ß1= 0
H1: ß1╪ 0
n= 10
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
3.144 /√ 53.42 =
0.4301
t stat = estimated slope/std error =ß1 /Se(ß1) =
-5.2166 / 0.4301
= -12.1289
Degree of freedom ,df = n-2= 8
p-value = 0.0000
decison : p-value<α , reject Ho
reject Ho and conclude that linear relations exists
between X and y
...............
THANKS
revert back for doubt
please upvote