Question

In: Statistics and Probability

Please show work/explain: 1. After testing H0: p = 0.33; versus HA: p < 0.33; at...

Please show work/explain:

1. After testing H0: p = 0.33; versus HA: p < 0.33; at α = 0.05, with  = 0.20 and n = 100, we do not reject H0.

Group of answer choices

True

False

2.

Based on a random sample of 25 units of product X, the average weight is 102 lb and the sample standard deviation is 10 lb. We would like to decide whether there is enough evidence to establish that the average weight for the population of product X is greater than 100 lb. Assume the population is normally distributed. Using the critical value rule, at α = .01.

What is the critical value for this hypothesis test?

Group of answer choices

1

1.28

2.492

1.645

3.

A test of Ho: p ≥ 0.6 vs. Ha: p < 0.6 fails to reject the null hypothesis. Later it is discovered that p = 0.5. What type of error, if any, has been made?

Group of answer choices

No error occurred because the null hypothesis was rightfully not rejected.

A Type II error occurred because the null hypothesis should have been rejected.

A Type I error occurred because the null hypothesis should not have been rejected.

Solutions

Expert Solution

----------------------------------------------------------------------------------------------------------------------


Related Solutions

1. We want to test H0 : p ≥ 0.43 versus Ha : p < 0.43...
1. We want to test H0 : p ≥ 0.43 versus Ha : p < 0.43 . We know that n = 500 and p = 0.3990 . (a) What is the value of the test statistic? Round your test statistic to 2 digits after the decimal point. (To get an answer good to 2 digits, compute the standard error to 5 digits.) (b) What is the p-value of the test ? Round your p-value to 3 digits after the...
For a test of population proportion H0: p = 0.6 versus Ha: p ≠0.6 , the...
For a test of population proportion H0: p = 0.6 versus Ha: p ≠0.6 , the test statistic equals 1.21. Find the P-value for this test.
In testing H0: μ1 - μ2 = 0 versus Ha: μ1 - μ2 ≠ 0, the...
In testing H0: μ1 - μ2 = 0 versus Ha: μ1 - μ2 ≠ 0, the computed value of the test statistic is z = 1.98. The P-value for this two-tailed test is then: a. .0478 b. .2381 c. .4761 d. .0239 e. .2619
A test of H0: p = 0.4 versus Ha: p > 0.4 has the test statistic...
A test of H0: p = 0.4 versus Ha: p > 0.4 has the test statistic z = 2.52. Part A: What conclusion can you draw at the 5% significance level? At the 1% significance level? (6 points) Part B: If the alternative hypothesis is Ha: p ≠ 0.4, what conclusion can you draw at the 5% significance level? At the 1% significance level? (4 points) (10 points)
Suppose that you are testing the hypotheses H0​: p=0.18 vs. HA​: p=/ 0.18. A sample of...
Suppose that you are testing the hypotheses H0​: p=0.18 vs. HA​: p=/ 0.18. A sample of size 150 results in a sample proportion of 0.25. ​a) Construct a 99​% confidence interval for p. ​ b) Based on the confidence​ interval, can you reject H0 at a =0.01​? Explain. ​c) What is the difference between the standard error and standard deviation of the sample​ proportion? ​d) Which is used in computing the confidence​ interval?
Determine the p-value for testing: H0: µ = 15 Ha: µ > 15 when a random...
Determine the p-value for testing: H0: µ = 15 Ha: µ > 15 when a random sample of size 18 was taken from a normal population whose standard deviation is unknown and the value of the test statistic equals 2.35. The 98% confidence interval for the population proportion of successes when a random sample of size 80 was taken from a very large population and the number of successes in that sample was counted to be 20.  No concluding statement is...
(a) Test H0 : p = 1/2 vs. Ha : p does not equal 1/2 for...
(a) Test H0 : p = 1/2 vs. Ha : p does not equal 1/2 for X ∼ Binomial(n=45,p), when we observe 16 successes. (b) Calculate a 95% confidence interval for p for the data above. (c) Calculate a 95% confidence interval for p when X ∼ Binomial(15,p) and we observe only successes
Please show all work and explain. You are testing the null hypothesis that there is no...
Please show all work and explain. You are testing the null hypothesis that there is no linear relationship between two variables X and Y. From your sample of n = 18, you determine that b1 = +4.5 and Sb1= 1.5. The value of t stat = coefficient/std error = 3. a) At the α = 0.05 level of significance, what are the critical values? b) Based on the information and your answer, what statistical decision should you make?
Aminah wish to perform the hypothesis testing H0: μ =1 versus H1: μ <1 versus with...
Aminah wish to perform the hypothesis testing H0: μ =1 versus H1: μ <1 versus with α=0.10. . The sample size 25 was obtained independently from a population with standard deviation 10. State the distribution of the sample mean given that null hypothesis is true and find the critical value, then calculate the values of sample mean if she reject the null hypothesis. Finally, compute the p-value, if the sample mean is -2.
For a hypothesis test of H0: p = 0.65 against the alternative Ha: p < 0.65,...
For a hypothesis test of H0: p = 0.65 against the alternative Ha: p < 0.65, the z test statistic is found to be -2.35. What can be said about his finding? The finding is significant at both α = 0.05 and α = 0.01. The finding is significant at α = 0.05 but not at α = 0.01. The finding is significant at α = 0.01 but not at α = 0.05. The finding is not significant at α...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT