In: Mechanical Engineering
The file CO2.txt, found on Blackboard with this assignment, contains 50 numbers, which represent the concentration of atmospheric carbon dioxide (parts per million) recorded at Mauna Loa, HI. The data in the file are the CO2 values on May 15th of each year from 1961 through 2010, (with background level CO2 removed). Fit an exponential model. Use the model to predict the CO2 value for May 15, 2015. Print the result to the screen using fprintf. The actual value was 125.1ppm.
41.5800 42.0100 43.2500 43.2400 43.1600 45.0100 46.0000 46.5700 48.3400 49.0700 49.9200 51.0700 53.4800 54.0900 54.9700 55.8700 57.7500 59.0100 60.4700 62.4600 63.9100 65.1400 66.7500 68.4300 69.9300 71.2100 72.8400 75.2200 76.6700 78.1600 80.3400 80.6600 81.2800 82.6800 84.7900 86.4100 87.8000 90.3000 92.0000 92.8200 95.0200 96.5500 99.3500 101.6100 103.2400 105.9400 107.4300 109.4900 111.1800 114.2200
We represent the years as 1 to 50 on x and the Co2 concentration data as y
The data can be represented exponentially as y = a.bx
Year |
x |
y |
Y = log y |
x*Y |
X^2 |
1961 |
1 |
41.58 |
1.6189 |
1.6189 |
1 |
1962 |
2 |
42.01 |
1.6234 |
3.2467 |
4 |
1963 |
3 |
43.25 |
1.6360 |
4.9080 |
9 |
1964 |
4 |
43.24 |
1.6359 |
6.5435 |
16 |
1965 |
5 |
43.16 |
1.6351 |
8.1754 |
25 |
1966 |
6 |
45.01 |
1.6533 |
9.9199 |
36 |
1967 |
7 |
46 |
1.6628 |
11.6393 |
49 |
1968 |
8 |
46.57 |
1.6681 |
13.3448 |
64 |
1969 |
9 |
48.34 |
1.6843 |
15.1588 |
81 |
1970 |
10 |
49.07 |
1.6908 |
16.9082 |
100 |
1971 |
11 |
49.92 |
1.6983 |
18.6810 |
121 |
1972 |
12 |
51.07 |
1.7082 |
20.4980 |
144 |
1973 |
13 |
53.48 |
1.7282 |
22.4665 |
169 |
1974 |
14 |
54.09 |
1.7331 |
24.2636 |
196 |
1975 |
15 |
54.97 |
1.7401 |
26.1019 |
225 |
1976 |
16 |
55.87 |
1.7472 |
27.9549 |
256 |
1977 |
17 |
57.75 |
1.7616 |
29.9464 |
289 |
1978 |
18 |
59.01 |
1.7709 |
31.8767 |
324 |
1979 |
19 |
60.47 |
1.7815 |
33.8493 |
361 |
1980 |
20 |
62.46 |
1.7956 |
35.9120 |
400 |
1981 |
21 |
63.91 |
1.8056 |
37.9169 |
441 |
1982 |
22 |
65.14 |
1.8138 |
39.9047 |
484 |
1983 |
23 |
66.75 |
1.8245 |
41.9624 |
529 |
1984 |
24 |
68.43 |
1.8352 |
44.0459 |
576 |
1985 |
25 |
69.93 |
1.8447 |
46.1166 |
625 |
1986 |
26 |
71.21 |
1.8525 |
48.1661 |
676 |
1987 |
27 |
72.84 |
1.8624 |
50.2840 |
729 |
1988 |
28 |
75.22 |
1.8763 |
52.5373 |
784 |
1989 |
29 |
76.67 |
1.8846 |
54.6541 |
841 |
1990 |
30 |
78.16 |
1.8930 |
56.7895 |
900 |
1991 |
31 |
80.34 |
1.9049 |
59.0529 |
961 |
1992 |
32 |
80.66 |
1.9067 |
61.0131 |
1024 |
1993 |
33 |
81.28 |
1.9100 |
63.0295 |
1089 |
1994 |
34 |
82.68 |
1.9174 |
65.1916 |
1156 |
1995 |
35 |
84.79 |
1.9283 |
67.4921 |
1225 |
1996 |
36 |
86.41 |
1.9366 |
69.7163 |
1296 |
1997 |
37 |
87.8 |
1.9435 |
71.9093 |
1369 |
1998 |
38 |
90.3 |
1.9557 |
74.3161 |
1444 |
1999 |
39 |
92 |
1.9638 |
76.5877 |
1521 |
2000 |
40 |
92.82 |
1.9676 |
78.7057 |
1600 |
2001 |
41 |
95.02 |
1.9778 |
81.0904 |
1681 |
2002 |
42 |
96.55 |
1.9848 |
83.3596 |
1764 |
2003 |
43 |
99.35 |
1.9972 |
85.8782 |
1849 |
2004 |
44 |
101.61 |
2.0069 |
88.3052 |
1936 |
2005 |
45 |
103.24 |
2.0138 |
90.6232 |
2025 |
2006 |
46 |
105.94 |
2.0251 |
93.1528 |
2116 |
2007 |
47 |
107.43 |
2.0311 |
95.4629 |
2209 |
2008 |
48 |
109.49 |
2.0394 |
97.8900 |
2304 |
2009 |
49 |
111.18 |
2.0460 |
100.2553 |
2401 |
2010 |
50 |
114.22 |
2.0577 |
102.8871 |
2500 |
Sum |
1275.000 |
91.980 |
2441.310 |
42925.000 |
?Y = AN+B?X
91.98 = 50A + 1275B ……(I)
?XY = A?X + B ?X2
2441.31 =1275A + 42925B …(II)
SOLVING (I) AND (II) WE GET,
A =1.602 B =0.0092
Now , a = Antilog(1.602) = 39.99, b = Antilog(0.0092) = 1.021
The exponential regression is thus given as,
Y =40(1.021)x
To estimate Co2 levels in 2015, we put x = 55
Y =40(1.021)55 = 125.4 ppm