Question

In: Statistics and Probability

If the random variable x~N(0,c^2), and g(x)=x^2, find and sketch the distribution and density function of...

If the random variable x~N(0,c^2), and g(x)=x^2, find and sketch the distribution and density function of the random variable y=g(x).

Solutions

Expert Solution

ANSWER::

NOTE:: I HOPE YOUR HAPPY WITH MY ANSWER....***PLEASE SUPPORT ME WITH YOUR RATING...

***PLEASE GIVE ME "LIKE"...ITS VERY IMPORTANT FOR ME NOW....PLEASE SUPPORT ME ....THANK YOU


Related Solutions

A continuous random variable X, has the density function f(x) =((6/5)(x^2)) , 0 ≤ x ≤...
A continuous random variable X, has the density function f(x) =((6/5)(x^2)) , 0 ≤ x ≤ 1; (6/5) (2 − x), 1 ≤ x ≤ 2; 0, elsewhere. (a) Verify f(x) is a valid density function. (b) Find P(X > 3 2 ), P(−1 ≤ X ≤ 1). (c) Compute the cumulative distribution function F(x) of X. (d) Compute E(3X − 1), E(X2 + 1) and σX.
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
1. Let X be random variable with density p(x) = x/2 for 0 < x<...
1. Let X be random variable with density p(x) = x/2 for 0 < x < 2 and 0 otherwise. Let Y = X^2−2. a) Compute the CDF and pdf of Y. b) Compute P(Y >0 | X ≤ 1.8).
Given the cumulative distribution of an exponential random variable find: The probability density function Show that...
Given the cumulative distribution of an exponential random variable find: The probability density function Show that it is a valid probability function The moment generating function The Expected mean The variance
Given the cumulative distribution of a gamma random variable find: The probability density function Show that...
Given the cumulative distribution of a gamma random variable find: The probability density function Show that it is a valid probability function The moment generating function The Expected mean The variance
1. The random variable X has probability density function: f(x) = ( ke−x 0 ≤ x...
1. The random variable X has probability density function: f(x) = ( ke−x 0 ≤ x ≤ ln 5 4 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln (5/4) 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question.
The random variable X has a continuous distribution with density f, where f(x) ={x/2−5i f10≤x≤12 ,0...
The random variable X has a continuous distribution with density f, where f(x) ={x/2−5i f10≤x≤12 ,0 otherwise. (a) Determine the cumulative distribution function of X.(1p) (b) Calculate the mean of X.(1p) (c) Calculate the mode of X(point where density attains its maximum) (d) Calculate the median of X, i.e. a number m such that P(X≤m) = 1/2 (e) Calculate the mean of the random variable Y= 12−X (f) Calculate P(X^2<121)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT