Question

In: Physics

Calculate the electric field(magnitude and direction) at the center of a square 52.5 cm on a...

Calculate the electric field(magnitude and direction) at the center of a square 52.5 cm on a side if one corner is occupied by a - 38.8 μC charge and the other three are occupied by - 27.6 μC charges.

answer is not 7.3*10^6 or 7.3*10^-7

Solutions

Expert Solution


Related Solutions

What are the magnitude and direction of the electric field?
A small object of mass 3.96 g and charge -17.1 µC is suspended motionless above the ground when immersed in a uniform electric field perpendicular to the ground. What are the magnitude and direction of the electric field?What is the magnitude _________ N/CWhat is the direction (upward East West downward)
Calculate the magnitude of the electric field at one corner of a square 2.42 mm on...
Calculate the magnitude of the electric field at one corner of a square 2.42 mm on a side if the other three corners are occupied by 2.25×10−6 C charges.
1.Calculate the magnitude of the electric field at one corner of a square 1.43 m on...
1.Calculate the magnitude of the electric field at one corner of a square 1.43 m on a side if the other three corners are occupied by 2.80E-6 C charges 2.Three positive particles of charges Q = 74.1 μC are located at the corners of an equilateral triangle of side L = 15.7 cm, as seen in the figure below. Calculate the magnitude of the net force on each particle. 3.An electron (mass m = 9.11E-31 kg) is accelerated in the...
What is the magnitude and direction of an electric field if it exerts a downward force...
What is the magnitude and direction of an electric field if it exerts a downward force of 10-6N on a charge of -5μC? Could you please explain how to do this question? Thank you
Determine the magnitude and direction of the electric field at point 1 in the figure(Figure 1).
Figure 1 Part A Determine the magnitude and direction of the electric field at point 1 in the figure(Figure 1). E1→=(2500V/m,up) E1→=(7500V/m,up) E1→=(3750V/m,down) E1→=(2500V/m,down) Part B Determine the magnitude and direction of the electric field at point 2 in the figure. E2→=(2500V/m,up) E2→=(3750V/m,down) E2→=(7500V/m,down) E2→=(5000V/m,up)
Magnitude and direction of the magnetic field
A proton moves perpendicular to a uniform magnetic field B at a speed of 1.30 x 10^7 m/s and experiences an acceleration of 2.40 x 10^13 m/s^2 in the positive x direction when its velocity is in the positive z direction.  Determine the magnitude and direction of the field?
A uniform electric field of magnitude 240 V/m is directed in the positive x direction. A...
A uniform electric field of magnitude 240 V/m is directed in the positive x direction. A +13.0 µC charge moves from the origin to the point (x, y) = (20.0 cm, 50.0 cm). (a) What is the change in the potential energy of the charge field system? J (b) Through what potential difference does the charge move?
Using the symmetry of the arrangement, calculate the magnitude of the electric field in N/C at...
Using the symmetry of the arrangement, calculate the magnitude of the electric field in N/C at the center of the square given that qa = qb = −1.00 μC and qc = qd = + 4.93 μCq. Assume that the square is 5 m on a side.
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton...
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton moves from the origin to the point (x, y)=(20.0cm, 50.0cm). a) Through what potential difference does the charge move? b) What is the change in the potential energy of the charge field system? c) An electron is released at rest at the origin and it moves in the +x direction. What would be its speed, Vf, after the electron is released from rest and...
1.Consider a negative point charge. Sketch electric field lines, including their direction. 2 Calculate electric field...
1.Consider a negative point charge. Sketch electric field lines, including their direction. 2 Calculate electric field of 1 electron at a distance of 0.1 nanometer away from it. Express your answer in SI units. 3 Consider a point charge of 1 C and calculate its electric field at a distance of 1 m.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT