1. If f(x) = ln(x/4)
-(a) Compute Taylor series for f at c = 4
-(b) Use Taylor series truncated after n-th term to compute f(8/3)
for n = 1,.....5
-(c) Compare the values from above with the values of f(8/3) and
plot the errors as a function of n
-(d) Show that Taylor series for f(x) = ln(x/4) at c = 4 represents
the function f for x element [4,5]
The function f(x)= x^−5 has a Taylor series at a=1 . Find the
first 4 nonzero terms in the series, that is write down the Taylor
polynomial with 4 nonzero terms.
Find the Taylor polynomial of degree 2 centered at a = 1 for the
function f(x) = e^(2x) . Use Taylor’s Inequality to estimate the
accuracy of the approximation e^(2x) ≈ T2(x) when 0.7 ≤
x ≤ 1.3
Let f(x) = 1 + x − x2 +ex-1.
(a) Find the second Taylor polynomial T2(x) for f(x)
based at b = 1.
b) Find (and justify) an error bound for |f(x) − T2(x)| on the
interval
[0.9, 1.1]. The f(x) - T2(x) is absolute value.
Please answer both questions cause it will be hard to post them
separately.