Question

In: Physics

Use the Gibbs distribution to calculate thermodynamic properties (including entropy, all relevant thermodynamic potentials, and heat...

Use the Gibbs distribution to calculate thermodynamic properties (including entropy, all relevant thermodynamic potentials, and heat capacity), of an ensemble of similar two-level systems, in thermodynamic equilibrium at temperature T that is comparable with the energy gap (delta). For each variable, sketch its temperature dependence, and find its asymptotic values (or trends) in the low- temperature and high-temperature limits.
Also, calculate the probabilities of the energy level occupation, and give physical interpretations of your results, in both temperature limits.

Solutions

Expert Solution


Related Solutions

Use the microcanonical distribution to calculate thermodynamic properties (including entropy, all relevant thermodynamic potentials, and heat...
Use the microcanonical distribution to calculate thermodynamic properties (including entropy, all relevant thermodynamic potentials, and heat capacity), of an ensemble of similar two-level systems, in thermodynamic equilibrium at temperature T that is comparable with the energy gap (delta). For each variable, sketch its temperature dependence, and find its asymptotic values (or trends) in the low- temperature and high-temperature limits. Hint: The two-level system is generally defined as any system with just two relevant states whose energies, say E0 and E1,...
derive the expressions for the thermodynamic properties Helmholtz free energy, entropy, pressure, chemical potential and internal...
derive the expressions for the thermodynamic properties Helmholtz free energy, entropy, pressure, chemical potential and internal energy for the canonical ensemble as a function of the partition function
1. Calculate the standard reaction entropy, enthalpy and Gibbs free energy for the following reactions a)...
1. Calculate the standard reaction entropy, enthalpy and Gibbs free energy for the following reactions a) N2(g) + NO2(g) ---> NO(g) + N2O(g) and b) 2F2(g) +2H2O(l) ---> 4HF(aq) + O2(g)
Using the standard values of enthalpy changes (ΔH°) and entropy change (ΔS°) to calculate the Gibbs...
Using the standard values of enthalpy changes (ΔH°) and entropy change (ΔS°) to calculate the Gibbs free energy change for the production of following metallic elements from their ore sources: (a) 2ZnO(s) 2Zn(s) + O2(g) (b) 2CaO(s) 2Ca(s) + O2(g) (c) 2Al2O3(s) 4Al(s) + 3O2(g) (d) 2MgO(s) 2Mg(s) + O2(g)
Calculate the enthalpy, entropy, and Gibbs free energy of mixing when 1.00 mol hexane is mixed...
Calculate the enthalpy, entropy, and Gibbs free energy of mixing when 1.00 mol hexane is mixed with 1.00 mol heptane at 298 K. You may treat this solution as ideal. Sketch the plot of entropy of mixing vs. mole fraction, and then sketch another plot for entropy vs. mass fraction. Calculate the mass fractions of hexane and heptane that would provide the greatest entropy of mixing.
1. Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 1.73...
1. Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 1.73 moles of Fe2O3(s) react at standard conditions. 3Fe2O3(s) + H2(g)2Fe3O4(s) + H2O(g) 2. Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 2.00 moles of CO(g) react at standard conditions. 2CO(g) + O2(g)2CO2(g) 3. Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 2.35 moles of H2O(l) react at standard conditions. 2H2O(l)2H2(g) + O2(g)
Calculate the standard entropy of vaporization of ammonia at 210.0K, given that the molar heat capacities...
Calculate the standard entropy of vaporization of ammonia at 210.0K, given that the molar heat capacities at constant pressure of liquid ammonia and ammonia vapor are 80.8 J.K-1.mol-1 and 35.1 J.K-1mol-1, respectively, in this range.
Explain how to calculate thermodynamic properties for a gas under adiabatic conditions Define the Third Law...
Explain how to calculate thermodynamic properties for a gas under adiabatic conditions Define the Third Law of Thermodynamics. Use tabulated values of absolute entropies to calculate the entropy change for a reaction. Recognize that all substances, even elements in their standard state, have absolute entropies that are greater than zero at temperatures above absolute zero. Write the thermodynamic conditions required for a spontaneous change both in terms of entropy and Gibbs energy. Write the mathematical definitions of Gibbs energy and...
Use the values found in Thermodynamic Properties to determine ΔS°, ΔH° and ΔG° at 298 K...
Use the values found in Thermodynamic Properties to determine ΔS°, ΔH° and ΔG° at 298 K for the reaction below. Enter all values to the 0.1 place. 4 NH3(g) + 5 O2(g) → 4 NO(g) + 6 H2O(g) ΔS° ΔH° ΔG°
Use a table of thermodynamic data to calculate the enthalapy (delta H) for the following three...
Use a table of thermodynamic data to calculate the enthalapy (delta H) for the following three reactions: Mg (s) + 1/2 O2 (g) --> MgO (s) Mg (s) + 2 HCl (aq) -----> MgCl2 (aq) + H2 (g) MgO(s) + 2HCl(aq) ----> H2O(l) + MgCl2(aq)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT