In: Statistics and Probability
Construct a 98% confidence interval to estimate the population mean with x =59 and σ=13 for the following sample sizes.
a) |
n |
e= |
33 |
b) |
n |
= |
42 |
c) |
n |
= |
60 |
a) With 98% confidence, when n=33 the population mean is between the lower limit of ? and the upper limit of ?
(Round to two decimal places as needed.)
b) With 98%confidence, when n=42 the population mean is between the lower limit of ? and the upper limit of ?
(Round to two decimal places as needed.)
a)
Level of Significance , α =
0.02
degree of freedom= DF=n-1= 32
't value=' tα/2= 2.4487 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 13.0000 /
√ 33 = 2.263010
margin of error , E=t*SE = 2.4487
* 2.26301 = 5.541381
confidence interval is
Interval Lower Limit = x̅ - E = 59.00
- 5.541381 = 53.458619
Interval Upper Limit = x̅ + E = 59.00
- 5.541381 = 64.541381
98% confidence interval is (
53.46 < µ < 64.54
)
b )
Level of Significance , α =
0.02
degree of freedom= DF=n-1= 41
't value=' tα/2= 2.4208 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 13.0000 /
√ 42 = 2.005944
margin of error , E=t*SE = 2.4208
* 2.00594 = 4.855994
confidence interval is
Interval Lower Limit = x̅ - E = 59.00
- 4.855994 = 54.144006
Interval Upper Limit = x̅ + E = 59.00
- 4.855994 = 63.855994
98% confidence interval is (
54.14 < µ < 63.86
)
c)
Level of Significance , α =
0.02
degree of freedom= DF=n-1= 59
't value=' tα/2= 2.3912 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 13.0000 /
√ 60 = 1.678293
margin of error , E=t*SE = 2.3912
* 1.67829 = 4.013182
confidence interval is
Interval Lower Limit = x̅ - E = 59.00
- 4.013182 = 54.986818
Interval Upper Limit = x̅ + E = 59.00
- 4.013182 = 63.013182
98% confidence interval is (
54.99 < µ < 63.01
)
THANKS
revert back for doubt
please upvote