Question

In: Statistics and Probability

Construct a 98​% confidence interval to estimate the population mean with x =59 and σ=13 for...

Construct a 98​% confidence interval to estimate the population mean with x =59 and σ=13 for the following sample sizes.

​a)

n

e=

33

​b)

n

=

42

​c)

n

=

60

​a) With 98​% ​confidence, when n=33 the population mean is between the lower limit of ? and the upper limit of ?

​(Round to two decimal places as​ needed.)

​b) With 98%confidence, when n=42 the population mean is between the lower limit of ? and the upper limit of ?

​(Round to two decimal places as​ needed.)

Solutions

Expert Solution

a)

Level of Significance ,    α =    0.02          
degree of freedom=   DF=n-1=   32          
't value='   tα/2=   2.4487   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   13.0000   / √   33   =   2.263010
margin of error , E=t*SE =   2.4487   *   2.26301   =   5.541381
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    59.00   -   5.541381   =   53.458619
Interval Upper Limit = x̅ + E =    59.00   -   5.541381   =   64.541381
98%   confidence interval is (   53.46   < µ <   64.54   )

b )

Level of Significance ,    α =    0.02          
degree of freedom=   DF=n-1=   41          
't value='   tα/2=   2.4208   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   13.0000   / √   42   =   2.005944
margin of error , E=t*SE =   2.4208   *   2.00594   =   4.855994
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    59.00   -   4.855994   =   54.144006
Interval Upper Limit = x̅ + E =    59.00   -   4.855994   =   63.855994
98%   confidence interval is (   54.14   < µ <   63.86   )

c)

Level of Significance ,    α =    0.02          
degree of freedom=   DF=n-1=   59          
't value='   tα/2=   2.3912   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   13.0000   / √   60   =   1.678293
margin of error , E=t*SE =   2.3912   *   1.67829   =   4.013182
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    59.00   -   4.013182   =   54.986818
Interval Upper Limit = x̅ + E =    59.00   -   4.013182   =   63.013182
98%   confidence interval is (   54.99   < µ <   63.01   )

THANKS

revert back for doubt

please upvote


Related Solutions

Construct a 98​% confidence interval to estimate the population mean with x =59 and s=13 for...
Construct a 98​% confidence interval to estimate the population mean with x =59 and s=13 for the following sample sizes. ​a) n = 33 ​b) n = 42 ​c) n = 60 ​a) With 98​% confidence, when n=33​, the population mean is between the lower limit of ? and the upper limit of ?. ​(Round to two decimal places as​ needed.)
Construct a 98​% confidence interval to estimate the population mean with x overbar equals 57 and...
Construct a 98​% confidence interval to estimate the population mean with x overbar equals 57 and sigma equals 11 for the following sample sizes. ​a) n equals 38 ​b) n equals 41 ​c) n equals 66
Construct a 98​% confidence interval to estimate the population mean when x overbar125 and s​ =...
Construct a 98​% confidence interval to estimate the population mean when x overbar125 and s​ = 27 for the sample sizes below. ​a) n=20       ​b) n=50       ​c) n=80 ​a) The 98​% confidence interval for the population mean when nequals20 is from a lower limit of _ to an upper limit of _.
Construct a 95% confidence interval to estimate the population mean with x=100 and σ=26 for the...
Construct a 95% confidence interval to estimate the population mean with x=100 and σ=26 for the following sample sizes. ​a) n equals= 35 ​b) n equals= 43 ​c) n equals= 60 With 95​% confidence, when n=35​, the population mean is between the lower limit of _ and the upper limit of _.
Construct a 95​% confidence interval to estimate the population mean with x=118 and σ=25 for the...
Construct a 95​% confidence interval to estimate the population mean with x=118 and σ=25 for the following sample sizes. ​a) n=38 ​b) n=41 ​ c) n=69 ​a) With 95​% ​confidence, when n= 38​, the population mean is between the lower limit of and the upper limit of . ​(Round to two decimal places as​ needed.) ​b) With 95​% ​confidence, when n= 41​, the population mean is between the lower limit of and the upper limit of . ​(Round to two...
Construct a 98​% confidence interval to estimate the population mean when x=65 and s​=14.7 for the...
Construct a 98​% confidence interval to estimate the population mean when x=65 and s​=14.7 for the sample sizes below. ​ a) n=19 ​ b) n=43 ​c) n=58 ​ a) The 98​% confidence interval for the population mean when n=19 is from a lower limit of to an upper limit of . ​(Round to two decimal places as​ needed.) ​b) The 98​% confidence interval for the population mean when n=43 is from a lower limit of to an upper limit of....
If X=119​, σ=29​, and n=33​, construct a 95​% confidence interval estimate of the population​ mean, ___<...
If X=119​, σ=29​, and n=33​, construct a 95​% confidence interval estimate of the population​ mean, ___< U <___
Construct a 95​% confidence interval to estimate the population mean with x̅ =109 and σ=31 for...
Construct a 95​% confidence interval to estimate the population mean with x̅ =109 and σ=31 for the following sample sizes. n =32 n =45 n =65 A) with 95​% confidence when n = 32, the population mean is between the lower limit ___ and upper limit ____ (round to 3 decimals) B) with 95​% confidence when n = 45, the population mean is between the lower limit ___ and upper limit ____ (round to 3 decimals) C) with 95​% confidence...
construct a 98% confidence interval to estimate the popuulation mean with x overbar =60 sigma=11 a)...
construct a 98% confidence interval to estimate the popuulation mean with x overbar =60 sigma=11 a) n = 39 b) n=41 c) n =69 a) with 98% confidence, when n =39, the population mean is between the lower limit of _ and the upper limit of _ b) with 98% confidence, when n =41, the population mean is between the lower limit of _ and the upper limit of _ c) with 98% confidence, when n =69, the population mean...
Construct a 98% confidence interval when n = 20, x = 67.5 and σ = 3.7.
Construct a 98% confidence interval when n = 20, x = 67.5 and σ = 3.7.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT