Question

In: Statistics and Probability

Situation Z: The following sample of seven randomly selected stock prices were observed for a large corporation. Assume the population is normally distributed



Situation Z: The following sample of seven randomly selected stock prices were observed for a large corporation. Assume the population is normally distributed 

31, 35, 19, 20, 23, 27, 25 

For situation Z, what is the value of the margin of error for a 95% confidence interval estimate of the average stock price? 

A. 2.65 

B. 1.96 

C.5.36 

D.25.7 

E. 25

Solutions

Expert Solution

For the given sample

n=7

sample standard deviation=5.794086

alpha=0.05

alpha/2=0.025

df=n-1=7-1=6

t critical value in excel

==T.INV(0.025,6)

=2.446911851

margin of error

=t*s/sqrt(n)

=(2.446911851*5.794086)/sqrt(7)

=5.358636

margin of error=5.36

OPTION C


Related Solutions

A sample of 10 measurements, randomly selected from a normally distributed population, resulted in a sample...
A sample of 10 measurements, randomly selected from a normally distributed population, resulted in a sample mean=5.2, and sample standard deviation=1.8. Using ,alpha=0.01 test the null hypothesis that the mean of the population is 3.3 against the alternative hypothesis that the mean of the population < 3.3, by giving the following: degrees of freedom =9 critical t value the test statistic
A sample of 15 measurements, randomly selected from a normally distributed population, resulted in a sample...
A sample of 15 measurements, randomly selected from a normally distributed population, resulted in a sample mean, x¯¯¯=6.1 and sample standard deviation s=1.92. Using α=0.1, test the null hypothesis that μ≥6.4 against the alternative hypothesis that μ<6.4 by giving the following. a) The number of degrees of freedom is: df= . b) The critical value is: tα= . c) The test statistic is: ttest=
Suppose the following data are selected randomly from a population of normally distributed values. According to...
Suppose the following data are selected randomly from a population of normally distributed values. According to the U.S. Bureau of Labor Statistics, the average weekly earnings of a production worker in July 2011 were $657.49. Suppose a labor researcher wants to test to determine whether this figure is still accurate today. The researcher randomly selects 56 production workers from across the United States and obtains a representative earnings statement for one week from each. The resulting sample average is $670.76....
What is the probability that a randomly selected member of a normally distributed population will lie...
What is the probability that a randomly selected member of a normally distributed population will lie more than 1.8 standard deviations from the mean?
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those​ tests, with the measurements given in hic​ (standard head injury condition​ units). The safety requirement is that the hic measurement should be less than...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. In a manual on how to have a number one​ song, it is stated that a song must be no longer than 210 seconds. A simple random sample of 40 current hit songs results in a mean length of 218.1 sec and...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A coin mint has a specification that a particular coin has a mean weight of 2.5 g. A sample of 32 coins was collected. Those coins have a mean weight of 2.49543 g and a standard deviation of 0.01598 g. Use a...
9. Assume that a simple random sample has been selected from a normally distributed population and...
9. Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A coin mint has a specification that a particular coin has a mean weight of 2.5 g. A sample of 39 coins was collected. Those coins have a mean weight of 2.49476 g and a standard deviation of 0.01316 g. Use...
12. Assume that a simple random sample has been selected from a normally distributed population and...
12. Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those​ tests, with the measurements given in hic​ (standard head injury condition​ units). The safety requirement is that the hic measurement should be less...
10. Assume that a simple random sample has been selected from a normally distributed population and...
10. Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A simple random sample of 25 filtered 100 mm cigarettes is​ obtained, and the tar content of each cigarette is measured. The sample has a mean of 18.6 mg and a standard deviation of 3.87 mg. Use a 0.05 significance level...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT