In: Finance
The current stock price for a company is $49 per share, and there are 3 million shares outstanding. The beta for this firms stock is 1.4, the risk-free rate is 4.8, and the expected market risk premium is 5.6%. This firm also has 270,000 bonds outstanding, which pay interest semiannually. These bonds have a coupon interest rate of 8%, 24 years to maturity, a face value of $1,000, and an annual yield to maturity of 7%. If the corporate tax rate is 31%, what is the Weighted Average Cost of Capital (WACC) for this firm? (Answer to the nearest hundredth of a percent, but do not use a percent sign).
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =24x2 |
Bond Price =∑ [(8*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^24x2 |
k=1 |
Bond Price = 1115.46 |
MV of equity=Price of equity*number of shares outstanding |
MV of equity=49*3000000 |
=147000000 |
MV of Bond=Par value*bonds outstanding*%age of par |
MV of Bond=1000*270000*1.11546 |
=301174200 |
MV of firm = MV of Equity + MV of Bond |
=147000000+301174200 |
=448174200 |
Weight of equity = MV of Equity/MV of firm |
Weight of equity = 147000000/448174200 |
W(E)=0.328 |
Weight of debt = MV of Bond/MV of firm |
Weight of debt = 301174200/448174200 |
W(D)=0.672 |
Cost of equity |
As per CAPM |
Cost of equity = risk-free rate + beta * (Market risk premium) |
Cost of equity% = 4.8 + 1.4 * (5.6) |
Cost of equity% = 12.64 |
After tax cost of debt = cost of debt*(1-tax rate) |
After tax cost of debt = 7*(1-0.31) |
= 4.83 |
WACC=after tax cost of debt*W(D)+cost of equity*W(E) |
WACC=4.83*0.672+12.64*0.328 |
WACC =7.39% |