Question

In: Statistics and Probability

1. A company conducted a marketing survey of college students and found that 225 own a...

1. A company conducted a marketing survey of college students and found that 225 own a bicycle and 77 owned a car. If 23 of those surveyed own both a car and a bicycle, how many interviewed have a car or a bicycle?

2.

A standard deck of cards consists of four suits (clubs, diamonds, hearts, and spades), with each suit containing 13 cards (ace, two through ten, jack, queen, and king) for a total of 52 cards in all.


How many cards in the deck are either a jack or a heart?


How many cards are face cards or clubs?


How many cards are red (diamonds or hearts) or queens?

Solutions

Expert Solution

1.

Number of students who own a bicycle = 225

Number of students who own a car = 77

Number of students who own a bicycle and a car = 23

Number of students who have a car of bicycle =

Number of students who own a bicycle + Number of students who own a car - Number of students who own a bicycle and a car

= 225+77-23=279

Number of interviewed have a car or a bicycle = 279

2.

Number of cards heart cards = 13

Number of jack cards = 4

Number of cards that are heart and jack = 1

Number or cards in the deck are either a jack or a heart

= Number of cards heart cards + Number of jack cards - Number of cards that are heart and jack =13+4-1 = 16

Number or cards in the deck are either a jack or a heart = 16

-------------------------------------------

Face cards : jack, queen, king

Total number of face cards in the deck = 4 suits x 3 face cards in each suit = 12

Number of face cards in the deck = 12

Total number of club cards = 13

Number of face cards and club cards (Club jack, club queen, club king) = 3

Number of cards that are face cards or clubs

= Number of face cards in the deck + Total number of club cards - Number of face cards and club cards

= 12+13-3 = 22

Number of cards that are face cards or clubs = 22

-----------------------------------

Number red cards(diamonds or hearts)  in deck = 13+13=26

Number of queen cards = 4

Number of red cards and queen cards (Diamond Queen and hearts queen) = 2

Number of cards that are red (diamonds or hearts) or queens

= Number red cards(diamonds or hearts)  in deck + Number of queen cards - Number of red cards and queen cards (Diamond Queen and hearts queen)

= 26 + 4 -2= 28

Number of cards that are red (diamonds or hearts) or queens = 28


Related Solutions

A nationwide survey of college students was conducted and found that students spend two hours per...
A nationwide survey of college students was conducted and found that students spend two hours per class hour studying. A professor at your university wants to determine whether the time students spend at your university is significantly different from the two hours. A random sample of 36 statistics students is carried out and the findings indicate an average of 1.75 hours. Assume a populatoin standard deviation of 0.5 hours. Using a level of significance of 0.05: 1. Construct a 95%...
According to a recent survey conducted at a local college, we found students spend an average...
According to a recent survey conducted at a local college, we found students spend an average of 19.5 hours on their smartphone per week, with a standard deviation of 3.5 hours. Assuming the data follows the normal distribution. a) How many percent of students in this college spend more than 15 hours on their smartphone per week? b) If we randomly select 12 students, what is the probability that the average of these students spending on the internet is more...
2.5 7.In a survey of college​ students, each of the following was found. Of these​ students,...
2.5 7.In a survey of college​ students, each of the following was found. Of these​ students, 356356 owned a​ tablet, 294294 owned a​ laptop, 280280 owned a gaming​ system, 195195 owned a tablet and a​ laptop, 199199 owned a tablet and a gaming​ system, 137137 owned a laptop and a gaming​ system, 6868 owned a​ tablet, a​ laptop, and a gaming​ system, and 2626 owned none of these devices. Complete parts ​a) through ​e) below. ​a) How many college students...
A survey was conducted at two colleges. 500 students at College A participated in the study....
A survey was conducted at two colleges. 500 students at College A participated in the study. The results indicated that on average, the students spent 15 hours per week doing online assignments and its standard deviation was 5 hours. At College B, 400 students participated in the study. The average hours they worked for online assignments was 20 with a standard deviation of 4 hours. Please test whether there is a true difference in the time students spent for online...
A survey was conducted at a college to determine the number of hours students spent outside...
A survey was conducted at a college to determine the number of hours students spent outside on weekends during the winter. For students from cold weather climates, the results were M = 8, SD = 1.5. For students from warm-weather climates, the results were M = 5, SD = 4.2. Explain what these numbers mean to a person who has never had a course in statistics, and suggest conclusions the person can draw from these results. These conclusions use the...
1. When 258 college students are randomly selected and surveyed, it is found that 106 own...
1. When 258 college students are randomly selected and surveyed, it is found that 106 own a car. Find a 99% confidence interval for the true proportion of all college students who own a car. a.0.351 < p < 0.471 b.0.332 < p < 0.490 c.0.339 < p < 0.482 d.0.360 < p < 0.461
A survey of 36 randomly selected students who dropped a course was conducted at a college....
A survey of 36 randomly selected students who dropped a course was conducted at a college. The following results were collected. Complete parts​ (a) through​ (c). a) Construct a contingency table for the two variables. CourseCourse PersonalPersonal WorkWork Male FemaleFemale ​(b) Test whether gender is independent of drop reason at the alphaαequals=0.1 level of significance. What are the​ hypotheses? A. Upper H 0H0​: pSubscript Upper CCequals=pSubscript Upper PPequals=pSubscript Upper WW Upper H 1H1​: At least one of the proportions is...
Use the following for the next 4 questions: A nationwide survey of college students was conducted...
Use the following for the next 4 questions: A nationwide survey of college students was conducted and found that students spend two hours per class hour studying. A professor at your school wants to determine whether the time students spend at your school is significantly different from the two hours. A random sample of fifteen statistics students is carried out and the findings indicate an average of 2.1 hours with a standard deviation of 0.24 hours. Using the 0.10 level...
A student at a junior college conducted a survey of 20 randomly selected​ full-time students to...
A student at a junior college conducted a survey of 20 randomly selected​ full-time students to determine the relation between the number of hours of video game playing each​ week, x, and​ grade-point average, y. She found that a linear relation exists between the two variables. The​ least-squares regression line that describes this relation is ModifyingAbove y with caret equals negative 0.0559 x plus 2.9289. (a) Predict the​ grade-point average of a student who plays video games 8 hours per...
A student at a junior college conducted a survey of 20 randomly selected? full-time students to...
A student at a junior college conducted a survey of 20 randomly selected? full-time students to determine the relation between the number of hours of video game playing each? week, x, and? grade-point average, y. She found that a linear relation exists between the two variables. The? least-squares regression line that describes this relation is y = -0.0503x + 2.9381. (a) Predict the grade-point average of a student who plays video games 8 hours per week. The predicted grade-point average...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT