In: Statistics and Probability
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 447 gram setting. It is believed that the machine is overfilling the bags. A 31 bag sample had a mean of 455 grams. Assume the population variance is known to be 900. Is there sufficient evidence at the 0.1 level that the bags are overfilled? Step 4 of 6: Find the P-value of the test statistic. Round your answer to four decimal places.
Solution :
The null and alternative hypothesis is ,
H0 : = 447
Ha : > 447
Test statistic = z
= ( - ) / / n
= (455 - 447) / 30 / 31
= 1.48
This is the right tailed test,
P(Z > 1.48) = 1-P (Z < 1.48 ) = 1 - 0.9306
P-value = 0.0694
= 0.1
P-value <
Reject the null hypothes