Question

In: Advanced Math

Suppose that the coefficient matrix of a homogeneous system of equations has a column of zeros....

Suppose that the coefficient matrix of a homogeneous system of equations has a column of zeros. Prove that the system has infinitely many solutions. What are the possibilities for the number of solutions to a linear system of equations? Can you definitively rule out any of these?

Solutions

Expert Solution


Related Solutions

I. Solve the homogeneous differential equations with the constant coefficient. a. ? ′′ + 5? ′...
I. Solve the homogeneous differential equations with the constant coefficient. a. ? ′′ + 5? ′ + 6? = 0 b. 4? ′′ − 8? ′ + 3? = 0 ? (0) = 2, ? ′ (0) = ½ II. Solve non-homogeneous differential equations with the indeterminate coefficient method. a. ?′′ − 3? ′ = 5cos(?) b. ? ′ ′ + 5? ′ + 2? ′ = 7? 3? III. Solve non-homogeneous differential equations with the parameter variation method. a....
The following matrix is the augmented matrix for a system of linear equations. A = 1...
The following matrix is the augmented matrix for a system of linear equations. A = 1 1 0 1 1 0 0 1 3 3 0 0 0 1 1 2 2 0 5 5 (a) Write down the linear system of equations whose augmented matrix is A. (b) Find the reduced echelon form of A. (c) In the reduced echelon form of A, mark the pivot positions. (d) Does the system have no solutions, exactly one solution or infinitely...
Using a system of equations, prove that a 2x2 matrix A has a right inverse if...
Using a system of equations, prove that a 2x2 matrix A has a right inverse if and only if it has a left inverse.
If a non•homogeneous system of equations has one dependent row or equation, then (select all that...
If a non•homogeneous system of equations has one dependent row or equation, then (select all that apply): i) the RREF of the augmented matrix will have a row of zeros ii) there will be infinitely many solutions iii) the complementary homogeneous solution will have many solutions iv) the coefficient matrix will not have an inverse v) none of the above
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that...
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that this system is consistent. (ii) Prove that if m < n then the system has infinitely many solutions. Hint: Use r (the number of pivot columns) of the augmented matrix.
A stable system has four zeros and four poles given by zeros: z = ± 1,...
A stable system has four zeros and four poles given by zeros: z = ± 1, ±j and poles: z = ± 0.9, ±j0.9. It is also known that the frequency response function H(e^jω) evaluated at ω=π/4 is equal to 1, i.e., H(e^jπ/4)=1 a. Determine the transfer function H(z), and indicate the region of convergence. b. Determine the difference equation representation.
Suppose a system of linear equations has 2 equations and 3 variables. (a) True or False:...
Suppose a system of linear equations has 2 equations and 3 variables. (a) True or False: The system could have no solutions. (b) Produce an example of a system with 2 equations and 3 variables that has no solution, or explain why such a system is impossible.
Suppose A is an mxn matrix of real numbers and x in an nx1 column vector....
Suppose A is an mxn matrix of real numbers and x in an nx1 column vector. a.) suppose Ax=0. Show that ATAx=0. b.)Suppose ATAx=0. show Ax=0. c.) by part a and b, we can conclude that Nul(A) = Nul(ATA), and thus dim(Nul A) = dim(Nul(ATA)), and thus nullity(A) = nullity(ATA). prove the columns of A are linearly independent iff ATA is invertible.
A linear system of equations Ax=b is known, where A is a matrix of m by...
A linear system of equations Ax=b is known, where A is a matrix of m by n size, and the column vectors of A are linearly independent of each other. Please answer the following questions based on this assumption, please explain all questions, thank you~. (1) Please explain why this system has at most one solution. (2) To give an example, Ax=b is no solution. (3) According to the previous question, what kind of inference can be made to the...
Solve the linear system of equations Ax = b, and give the rank of the matrix...
Solve the linear system of equations Ax = b, and give the rank of the matrix A, where A = 1 1 1 -1 0 1 0 2 1 0 1 1 b = 1 2 3
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT