Question

In: Physics

a projectile is launched in the horizontal direction at an angle of 0 degrees. vertical height...

a projectile is launched in the horizontal direction at an angle of 0 degrees. vertical height of 0.992meters and a horizontal displacement of 3.1311+-0.051205m what is the time of the fall? do not forget u certainties

Solutions

Expert Solution


Related Solutions

A projectile is launched at an angle of 60 degrees to the horizontal from 6.5ft above...
A projectile is launched at an angle of 60 degrees to the horizontal from 6.5ft above the ground at an initial speed of 100 ft/sec. Assume the x-axis is horizontal, the positive y axis is vertical (opposite g), the ground is horizontal, and the only gravitational force acta on the object. Answer parts A through D. A) Find the velocity - v(t) and position - r(t) vectors for t greater than or equal to 0. B) Graph the trajectory C)...
A projectile is launched with a speed of 45 m/s at an angle of 35 degrees...
A projectile is launched with a speed of 45 m/s at an angle of 35 degrees above the horizontal from the top of a wall. The projectile lands 250m from the base of the wall. a.) Determine the height of the wall. b.) Determine the impact velocity of the projectile
A projectile is fired at an angle of 28 degrees above the horizontal with an initial...
A projectile is fired at an angle of 28 degrees above the horizontal with an initial velocity of 1800 feet per second from an altitude of 1,000 feet above the level ground.   A) Formulate the vector valued function (in simplified form) for the position of the projectile at any time,t. B) When and where (in terms of down range distance) does the projectile strike the ground? Be clear and label your results, including units. C) When does the projectile reach...
A projectile is launched with an initial velocity vo at an angle theta above the horizontal....
A projectile is launched with an initial velocity vo at an angle theta above the horizontal. In terms of vo, theta and acceleration due to gravity g, determine for the projectile i) the time to reach its maximum height and ii) its maximum height.
Consider a projectile launched at a height h feet above the ground and at an angle...
Consider a projectile launched at a height h feet above the ground and at an angle θ with the horizontal. If the initial velocity is v0 feet per second, the path of the projectile is modeled by the parametric equations x = t(v0 cos(θ)) and y = h + (v0 sin(θ))t − 16t2. The center field fence in a ballpark is 10 feet high and 400 feet from home plate. The ball is hit h = 3 feet above the...
A ball is launched at an angle of 33.4 degrees up from the horizontal, with a...
A ball is launched at an angle of 33.4 degrees up from the horizontal, with a muzzle velocity of 6.5 meters per second, from a launch point which is 1 meters above the floor. How far horizontally (in meters) from the launcher will it land on the floor? Use 9.82 meters per second for “g”.
A projectile is launched with initial velocity of 11 m/s at 30.5 degrees above the horizontal....
A projectile is launched with initial velocity of 11 m/s at 30.5 degrees above the horizontal. - find the x-component of the initial velocity: - find the y-component of the initial velocity:
A projectile is launched at a height of 5ft. On the ground with an initial speed...
A projectile is launched at a height of 5ft. On the ground with an initial speed of 1000 feet per second and an angle of 60 with the horizontal. Use the movement of a projectile that does not consider air resistance and determines: The vector function that describes the position of the projectile The parametric equations that describe the motion The time it took for the projectile to go up The maximum height The time of flight The maximum horizontal...
A projectile is fried at an angle of 58° above the horizontal at a speed of...
A projectile is fried at an angle of 58° above the horizontal at a speed of 100 m/s. Part A: calculate the magnitude of its velocity at t= 5.0 s Part B: calculate the direction of its velocity (above the horizontal) at t= 5.0s Part C: Calculate the magnitude of its velocity at t= 10s part D: calculate the direction of its velocity (above the horizontal) at t= 10s part E: calculate the magnitude of its velocity at t= 15s...
A projectile is launched with an initial speed of 60 m/s at an angle of 35°...
A projectile is launched with an initial speed of 60 m/s at an angle of 35° above the horizontal. The projectile lands on a hillside 4.0 s later. Neglect air friction. (a) What is the projectile's velocity at the highest point of its trajectory? m/s (b) What is the straight-line distance from where the projectile was launched to where it hits its target? m
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT