In: Statistics and Probability
Using Minitab, use the regression model with all nine independent variables to test the hy- potheses H0 : βAGE = −2500 vs. Ha : βAGE < −2500. Use α = 0.05 and include all steps of a hypothesis test.
Row PRICE BATHS
BEDA BEDB BEDC CARA
CARB AGE LOT
DOM
1 25750 1.0 1
0 0 1 0
23 9680 164
2 37950 1.0 0
1 0 0 1
7 1889 67
3 46450 2.5 0
1 0 0 0
9 1941 315
4 46550 2.5 0
0 1 1 0
18 1813 61
5 47950 1.5 1
0 0 0 1
2 1583 234
6 49950 1.5 0
1 0 0 0
10 1533 116
7 52450 2.5 0
0 1 0 0
4 1667 162
8 54050 2.0 0
1 0 0 1
5 3450 80
9 54850 2.0 0
1 0 0 0
5 1733 63
10 52050 2.5 0
1 0 0 0
5 3727 102
11 54392 2.5 0
1 0 0 0
7 1725 48
12 53450 2.5 0
1 0 0 0
3 2811 423
13 59510 2.5 0
1 0 0 1
11 5653 130
14 60102 2.5 0
1 0 0 0
7 2333 159
15 63850 2.5 0
0 1 0 0
6 2022 314
16 62050 2.5 0
0 0 0 0
5 2166 135
17 69450 2.0 0
1 0 0 0
15 1836 71
18 82304 2.5 0
0 1 0 0
8 5066 338
19 81850 2.0 0
1 0 0 0
0 2333 147
20 70050 2.0 0
1 0 0 0
4 2904 115
21 112450 2.5 0
0 1 0 0
1 2930 11
22 127050 3.0 0
0 1 0 0
9 2904 36
Result:
Using Minitab, use the regression model with all nine independent variables to test the hy- potheses H0 : βAGE = −2500 vs. Ha : βAGE < −2500. Use α = 0.05 and include all steps of a hypothesis test.
MINITAB output:
Regression Analysis: PRICE versus BATHS, BEDA, BEDB, ... E, LOT, DOM
Analysis of Variance
Source |
DF |
Adj SS |
Adj MS |
F-Value |
P-Value |
Regression |
9 |
7588195915 |
843132879 |
3.09 |
0.036 |
BATHS |
1 |
343195412 |
343195412 |
1.26 |
0.284 |
BEDA |
1 |
90743050 |
90743050 |
0.33 |
0.575 |
BEDB |
1 |
5304105 |
5304105 |
0.02 |
0.892 |
BEDC |
1 |
567736913 |
567736913 |
2.08 |
0.175 |
CARA |
1 |
1021047693 |
1021047693 |
3.74 |
0.077 |
CARB |
1 |
361573700 |
361573700 |
1.32 |
0.272 |
AGE |
1 |
56672323 |
56672323 |
0.21 |
0.657 |
LOT |
1 |
503587614 |
503587614 |
1.84 |
0.200 |
DOM |
1 |
1585837280 |
1585837280 |
5.80 |
0.033 |
Error |
12 |
3279393939 |
273282828 |
||
Total |
21 |
10867589854 |
Model Summary
S |
R-sq |
R-sq(adj) |
R-sq(pred) |
16531.3 |
69.82% |
47.19% |
* |
Coefficients
Term |
Coef |
SE Coef |
T-Value |
P-Value |
VIF |
Constant |
39616.87 |
30941.66 |
1.28 |
0.225 |
|
BATHS |
11686.41 |
10428.37 |
1.12 |
0.284 |
2.30 |
BEDA |
15128.24 |
26253.53 |
0.58 |
0.575 |
4.59 |
BEDB |
2477.41 |
17782.70 |
0.14 |
0.892 |
6.15 |
BEDC |
26114.47 |
18118.15 |
1.44 |
0.175 |
5.24 |
CARA |
-44023.46 |
22775.47 |
-1.93 |
0.077 |
3.45 |
CARB |
-12375.43 |
10758.90 |
-1.15 |
0.272 |
1.39 |
AGE |
-505.79 |
1110.69 |
-0.46 |
0.657 |
2.85 |
LOT |
3.40 |
2.50 |
1.36 |
0.200 |
1.68 |
DOM |
-86.05 |
35.72 |
-2.41 |
0.033 |
1.18 |
Regression Equation
PRICE |
= |
39617 + 11686 BATHS + 15128 BEDA + 2477 BEDB + 26114 BEDC -
44023 CARA - 12375 CARB |
H0: βage = -2500
H1: βage < -2500
This is a Lower tail test
t = (-505.79-(-2500)) / 1110.69
= 1.7955
DF = 12
Table value of t with 12 DF at 0.05 level = -1.782
Rejection region: Reject Ho if t < -1.782
Calculated t = 1.7955 not in the rejection region.
The null hypothesis is not rejected.
There is not enough evidence to conclude that βage is less than -2500 .