Question

In: Statistics and Probability

Using Minitab, use the regression model with all nine independent variables to test the hy- potheses...

Using Minitab, use the regression model with all nine independent variables to test the hy- potheses H0 : βAGE = −2500 vs. Ha : βAGE < −2500. Use α = 0.05 and include all steps of a hypothesis test.

Row   PRICE   BATHS   BEDA   BEDB   BEDC   CARA   CARB   AGE   LOT   DOM  
1   25750   1.0   1   0   0   1   0   23   9680   164  
2   37950   1.0   0   1   0   0   1   7   1889   67  
3   46450   2.5   0   1   0   0   0   9   1941   315  
4   46550   2.5   0   0   1   1   0   18   1813   61  
5   47950   1.5   1   0   0   0   1   2   1583   234  
6   49950   1.5   0   1   0   0   0   10   1533   116  
7   52450   2.5   0   0   1   0   0   4   1667   162  
8   54050   2.0   0   1   0   0   1   5   3450   80  
9   54850   2.0   0   1   0   0   0   5   1733   63  
10   52050   2.5   0   1   0   0   0   5   3727   102  
11   54392   2.5   0   1   0   0   0   7   1725   48  
12   53450   2.5   0   1   0   0   0   3   2811   423  
13   59510   2.5   0   1   0   0   1   11   5653   130  
14   60102   2.5   0   1   0   0   0   7   2333   159  
15   63850   2.5   0   0   1   0   0   6   2022   314  
16   62050   2.5   0   0   0   0   0   5   2166   135  
17   69450   2.0   0   1   0   0   0   15   1836   71  
18   82304   2.5   0   0   1   0   0   8   5066   338  
19   81850   2.0   0   1   0   0   0   0   2333   147  
20   70050   2.0   0   1   0   0   0   4   2904   115  
21   112450   2.5   0   0   1   0   0   1   2930   11  
22   127050   3.0   0   0   1   0   0   9   2904   36  

Solutions

Expert Solution

Result:

Using Minitab, use the regression model with all nine independent variables to test the hy- potheses H0 : βAGE = −2500 vs. Ha : βAGE < −2500. Use α = 0.05 and include all steps of a hypothesis test.

MINITAB output:

Regression Analysis: PRICE versus BATHS, BEDA, BEDB, ... E, LOT, DOM

Analysis of Variance

Source

DF

Adj SS

Adj MS

F-Value

P-Value

Regression

9

7588195915

843132879

3.09

0.036

BATHS

1

343195412

343195412

1.26

0.284

BEDA

1

90743050

90743050

0.33

0.575

BEDB

1

5304105

5304105

0.02

0.892

BEDC

1

567736913

567736913

2.08

0.175

CARA

1

1021047693

1021047693

3.74

0.077

CARB

1

361573700

361573700

1.32

0.272

AGE

1

56672323

56672323

0.21

0.657

LOT

1

503587614

503587614

1.84

0.200

DOM

1

1585837280

1585837280

5.80

0.033

Error

12

3279393939

273282828

Total

21

10867589854

Model Summary

S

R-sq

R-sq(adj)

R-sq(pred)

16531.3

69.82%

47.19%

*

Coefficients

Term

Coef

SE Coef

T-Value

P-Value

VIF

Constant

39616.87

30941.66

1.28

0.225

BATHS

11686.41

10428.37

1.12

0.284

2.30

BEDA

15128.24

26253.53

0.58

0.575

4.59

BEDB

2477.41

17782.70

0.14

0.892

6.15

BEDC

26114.47

18118.15

1.44

0.175

5.24

CARA

-44023.46

22775.47

-1.93

0.077

3.45

CARB

-12375.43

10758.90

-1.15

0.272

1.39

AGE

-505.79

1110.69

-0.46

0.657

2.85

LOT

3.40

2.50

1.36

0.200

1.68

DOM

-86.05

35.72

-2.41

0.033

1.18

Regression Equation

PRICE

=

39617 + 11686 BATHS + 15128 BEDA + 2477 BEDB + 26114 BEDC - 44023 CARA - 12375 CARB
- 506 AGE + 3.40 LOT - 86.0 DOM

H0: βage = -2500   
H1: βage  < -2500  
 
This is a Lower tail test
t = (-505.79-(-2500)) / 1110.69

= 1.7955

DF = 12

Table value of t with 12 DF at 0.05 level = -1.782

Rejection region: Reject Ho if t < -1.782

Calculated t = 1.7955 not in the rejection region.

The null hypothesis is not rejected.

There is not enough evidence to conclude that βage is less than -2500 .


Related Solutions

a. Construct a regression model using all three independent variables. Let y be the final exam...
a. Construct a regression model using all three independent variables. Let y be the final exam scores,x1 be the GPAs, x2 be the number of hours spent studying, and x3be the number of absences during the semester. b.Calculate the multiple coefficient of determination c.Test the significance of the overall regression model using significance=0.10 d.Calculate the adjusted multiple coefficent of determination Score   GPA   Hours   Absences 67   2.53   3.0   0 68   2.25   4.0   3 69   2.60   2.5   1 71   3.11   0.5   0...
a. Construct a regression model using all three independent variables. Let y be the final exam...
a. Construct a regression model using all three independent variables. Let y be the final exam scores,x1 be the GPAs, x2 be the number of hours spent studying, and x3be the number of absences during the semester. b.Calculate the multiple coefficient of determination c.Test the significance of the overall regression model using significance=0.10 d.Calculate the adjusted multiple coefficent of determination Score   GPA   Hours   Absences 67   2.53   3.0   0 68   2.25   4.0   3 69   2.60   2.5   1 71   3.11   0.5   0...
11.30  A simpler model. In the multiple regression analysis using all four explanatory variables, Theaters and...
11.30  A simpler model. In the multiple regression analysis using all four explanatory variables, Theaters and Budget appear to be the least helpful (given that the other two explanatory variables are in the model). (a) Perform a new analysis using only the movie’s opening-weekend revenue and IMDb rating. Give the estimated regression equation for this analysis. (b) What percent of the variability in USRevenue is explained by this model? (c) Test the null hypothesis that Theaters and Budget combined add...
(Ch. 18 – Interaction Effects)  Below is Minitab output for a regression model using the Teen Gambling...
(Ch. 18 – Interaction Effects)  Below is Minitab output for a regression model using the Teen Gambling data from Chapter 18.   Use it to answer the questions below. Regression Analysis: Gambling Amount ($) versus Sex, Status, Sex:Status, Income ($100) Model Summary       S    R-sq  R-sq(adj)   21.7798  56.39%     52.24%       Coefficients Term          Coef  SE Coef  T-Value  P-Value   Constant      30.1     16.7     1.80    0.079 Sex          -68.2     20.1    -3.40    0.002   Status      -0.481    0.269    -1.79    0.081 Sex:Status   1.088    0.460     2.37    0.023 Income ($)   4.970    0.984     5.05    0.000 Regression Equation Gambling Amount($) = 30.1 - 68.2 Sex - 0.481 Status + 1.088 Sex:Status + 4.970 Income Interpret the slope of the Sex:Status (interaction) predictor for a female teenager....
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat = 55.17+1.1X1 -0.153X2 Other statistics produced for analysis include: SSR = 12370.8, SST = 35963.0, Sb1 = 0.33, Sb2 = 0.20. (16 points) Interpret b1 and b2 in this estimated regression equation Predict y when X1 = 65 and X2 = 70. Compute R-square and Adjusted R-Square. Comment on the goodness of fit of the model. Compute MSR and MSE. Compute F and use...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat = 55.17+1.1X1 -0.153X2 Other statistics produced for analysis include: SSR = 12370.8, SST = 35963.0, Sb1 = 0.33, Sb2 = 0.20. (16 points) Interpret b1 and b2 in this estimated regression equation Predict y when X1 = 65 and X2 = 70. Compute R-square and Adjusted R-Square. Comment on the goodness of fit of the model. Compute MSR and MSE. Compute F and use...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat = 55.17+1.2X1 -0.163X2 Other statistics produced for analysis include: SSR = 12370.8, SST = 35963.0, Sb1 = 0.33, Sb2 = 0.20. (16 points) Interpret b1 and b2 in this estimated regression equation Predict y when X1 = 65 and X2 = 70. Compute R-square and Adjusted R-Square. Comment on the goodness of fit of the model. Compute MSR and MSE.    Compute F and...
2. The estimated regression equation for a model involving two independent variables and 65 observations is:...
2. The estimated regression equation for a model involving two independent variables and 65 observations is: yhat = 55.17+1.2X1 -0.163X2 Other statistics produced for analysis include: SSR = 12370.8, SST = 35963.0, Sb1 = 0.33, Sb2 = 0.20. (16 points) a. Interpret b1 and b2 in this estimated regression equation b. Predict y when X1 = 65 and X2 = 70. c. Compute R-square and Adjusted R-Square. d. Comment on the goodness of fit of the model. e. Compute MSR...
The estimated regression equation for a model involving two independent variables and 60 observations is: y...
The estimated regression equation for a model involving two independent variables and 60 observations is: y ̂ = 30.17 - 2.5X1 + 0.428X2 Other statistics produced for analysis include: SSR = 1160.6, SST = 2183.4, Sb1 = 0.13, Sb2 = 0.20. Interpret b1 and b2 in this estimated regression equation Predict y when X1 = 50 and X2 = 60. Compute R-square and Adjusted R-Square. Comment on the goodness of fit of the model. Perform a “t” test using the...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat...
The estimated regression equation for a model involving two independent variables and 65 observations is: yhat = 55.17+1.1X1 -0.153X2 Other statistics produced for analysis include: SSR = 12370.8, SST = 35963.0, Sb1 = 0.33, Sb2 = 0.20. (16 points) Interpret b1 and b2 in this estimated regression equation Predict y when X1 = 65 and X2 = 70. Compute R-square and Adjusted R-Square. Comment on the goodness of fit of the model. Compute MSR and MSE. Compute F and use...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT