In: Statistics and Probability
Consider the following hypothesis statement using a = 0.05 and data from two independent samples. Assume the population variances are not equal and the populations are normally distributed. H0: u1 - u2 = 0 H1: u1 - u2 = 0 x1: = 114.7 x2 = 122.0 s1 = 24.6 s2 = 14.3 n1 = 14 n2 20 a. Calculate the appropriate test statistic and interpret the result. b. Approximate the p-value using Table 5 in Appendix A and interpret the results. c. Determine the precise p-value using Excel. d. Verify your results using PHStat..
Ho :   µ1 - µ2 =   0  
       
Ha :   µ1-µ2 ╪   0  
      
          
       
Level of Significance ,    α =   
0.05          
          
       
Sample #1   ---->   sample 1  
       
mean of sample 1,    x̅1=   114.70  
       
standard deviation of sample 1,   s1 =   
24.6          
size of sample 1,    n1=   14  
       
          
       
Sample #2   ---->   sample 2  
       
mean of sample 2,    x̅2=   122.000  
       
standard deviation of sample 2,   s2 =   
14.30          
size of sample 2,    n2=   20  
       
          
       
difference in sample means = x̅1-x̅2 =   
114.700   -   122.0000  
=   -7.3000
          
       
std error , SE =    √(s1²/n1+s2²/n2) =   
7.3110          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -7.3000  
/   7.3110   ) =   -0.998
          
       
  
=
19          
          
       
          
       
  
  
p-value =       
0.3306   (excel function: =T.DIST.2T(t stat,df)
)  
   
Conclusion:     p-value>α , Do not reject null
hypothesis          
   
.........................
Please revert back in case of any doubt.
Please upvote. Thanks in advance.