Question

In: Physics

A bumper car with mass m1 = 115 kg is moving to the right with a...

A bumper car with mass m1 = 115 kg is moving to the right with a velocity of v1 = 4.8 m/s. A second bumper car with mass m2 = 95 kg is moving to the left with a velocity of v2 = -3.8 m/s. The two cars have an elastic collision. Assume the surface is frictionless.

1. What is the velocity of the center of mass of the system?

2. What is the initial velocity of car 1 in the center-of-mass reference frame?

3. What is the final velocity of car 1 in the center-of-mass reference frame?

4. What is the final velocity of car 1 in the ground (original) reference frame?

5. What is the final velocity of car 2 in the ground (original) reference frame?

6. In a new (inelastic) collision, the same two bumper cars with the same initial velocities now latch together as they collide.

What is the final speed of the two bumper cars after the collision?

ANSWER THIS QUESTION IN PARTICULAR PLEASE. DO NOT PROVIDE A GENERALIZED SOLUTION.

Solutions

Expert Solution

similar one but with different numericals sorry for the inconvenience

A bumper car with mass m1 = 110 kg is moving to the right with a velocity of v1 = 5 m/s. A second bumper car with mass m2 = 97 kg is moving to the left with a velocity of v2 = -3.9 m/s. The two cars have an elastic collision. Assume the surface is frictionless. (((Focus on #3. 1 and 2 are solved)))
===============================
To understand this topic,

First do the problem in the usual ground (original) reference frame.

Lit us take u1 =5m/s and u2 = -3.9 m/s so that u refers initial. And final is denoted by v.
1 and 2 represent car 1 and car 2.

Momentum lost by car 1 = momentum gained by car 2.
110(5-v1) = 97(v2+3.9) -------------------1
v1= 1.561-0.882v2------------------1A

K.E lost by car 1 = K.E gained by car 2.
110(5^2-v1^2) = 97(v2^2 - 3.9 ^2) (after canceling 0.5 on both sides) --------------------2
Using (a^2


Related Solutions

A bumper car with mass m1 = 122 kg is moving to the right with a...
A bumper car with mass m1 = 122 kg is moving to the right with a velocity of v1 = 4.5 m/s. A second bumper car with mass m2 = 2m1 = 244 kg is at rest. The two have an elastic collision and the first bumper car rebounds backwards at a speed that is 1/3 of its original speed (1.5 m/s). Assume the surface is frictionless. 1) What is the change in momentum of bumper car 1? (let the...
A bumper car with mass m1 = 106.0 kg is moving to the right with a...
A bumper car with mass m1 = 106.0 kg is moving to the right with a velocity of v1 = 4.5 m/s. A second bumper car with mass m2 = 98.0 kg is moving to the left with a velocity of v2 = 3.1 m/s. The two cars have a completely elsatic collision. Assume the surface is frictionless. 1. What is the initial velocity of car 1 in the center of mass reference frame? 2. What is the final velocity...
A bumper car with mass m1 = 116 kg is moving to the right with a...
A bumper car with mass m1 = 116 kg is moving to the right with a velocity of v1 = 4 m/s. A second bumper car with mass m2 = 97 kg is moving to the left with a velocity of v2 = -3 m/s. The two cars have an elastic collision. Assume the surface is frictionless. 1)What is the velocity of the center of mass of the system? 2)What is the initial velocity of car 1 in the center-of-mass...
A train car with mass m1 = 576 kg is moving to the right with a...
A train car with mass m1 = 576 kg is moving to the right with a speed of v1 = 7 m/s and collides with a second train car. The two cars latch together during the collision and then move off to the right at vf = 4.4 m/s. A)What is the initial momentum of the first train car? B)What is the mass of the second train car? C)What is the change in kinetic energy of the two train system...
A block of mass m1 = 2.20 kg initially moving to the right with a speed...
A block of mass m1 = 2.20 kg initially moving to the right with a speed of 3.10 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.7 kg initially moving to the left with a speed of 1.5 m/s.The spring constant is 528 N/m. What if m1 is initially moving at 3.6 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A block of mass m1 = 2.3 kg initially moving to the right with a speed...
A block of mass m1 = 2.3 kg initially moving to the right with a speed of 4.8 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.5 kg initially moving to the left with a speed of 2.7 m/s. The spring constant is 580N/m. What if m1 is initially moving at 3.6 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A block of mass m1 = 2.9 kg initially moving to the right with a speed...
A block of mass m1 = 2.9 kg initially moving to the right with a speed of 4.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 5 kg initially moving to the left with a speed of 2.8 m/s as shown in figure (a). The spring constant is 572 N/m. What if m1 is initially moving at 2.2 m/s while m2 is initially at rest? (a) Find the maximum...
A block of mass m1 = 1.60 kg initially moving to the right with a speed...
A block of mass m1 = 1.60 kg initially moving to the right with a speed of 4.00 m / s on a track horizontal without friction and collides with a spring attached to a second block of mass m2 = 2.10 kg that initially moves to the left with a speed of 2.50 m / s. The spring constant is 600 N / m. a) Find the speeds of the two blocks after the collision. b) During the collision,...
1. A toy car of mass 2.0 kg moving to the right with a speed of...
1. A toy car of mass 2.0 kg moving to the right with a speed of 8.0 m/s collides perfectly inelastically with another toy car of mass 3.0 kg that is moving to the left with a speed of 2.0 m/s. Find the magnitude and the direction of the velocity of the system Immediately after the collision. 2. In an elastic collision of two objects, a. momentum is not conserved. b. momentum is conserved, and the kinetic energy after the...
Consider an object of mass m1 = 0.360 kg moving with a uniform speed of 5.40...
Consider an object of mass m1 = 0.360 kg moving with a uniform speed of 5.40 m/s on a frictionless surface. This object makes an elastic head-on collision with another object of mass m2 = 0.645 kg which is initially at rest. (a) Find the speed of m1 immediately after collision. m/s (b) Find the speed of m2 immediately after collision m/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT