In: Statistics and Probability
2 - A random sample of n = 12 values taken from a normally distributed population resulted in the sample values below. Use the sample information to construct a 98% confidence interval estimate for the population mean.
105 111 95 106 114 108 114 111 105 113 113 95
Solution :
Given that,
x | x2 |
105 | 11025 |
111 | 12321 |
95 | 9025 |
106 | 11236 |
114 | 12996 |
108 | 11664 |
114 | 12996 |
111 | 12321 |
105 | 11025 |
113 | 12769 |
113 | 12769 |
95 | 9025 |
∑x=1290 | ∑x2=139172 |
Mean ˉx=∑xn
=105+111+95+106+114+108+114+111+105+113+113+95/12
=1290/12
=107.5
Sample Standard deviation S=√∑x2-(∑x)2nn-1
=√139172-(1290)212/11
=√139172-138675/11
=√497/11
=√45.1818
=6.7217
Degrees of freedom = df = n - 1 = 12 - 1 = 11
At 98% confidence level the t is ,
= 1 - 98% = 1 - 0.98= 0.02
/ 2 = 0.021 / 2 = 0.01
t /2,df = t0.01,11 =2.718
Margin of error = E = t/2,df * (s /n)
= 2.718 * (6.72 / 12)
= 5.27
Margin of error = 5.27
The 98% confidence interval estimate of the population mean is,
- E < < + E
107.5 - 5.27 < < 107.5 + 5.27
102.23 < < 112.77
(102.23, 112.77 )