Question

In: Statistics and Probability

A random sample of n=12 values taken from a normally distributed population resulted in the sample...

A random sample of n=12 values taken from a normally distributed population resulted in the sample values below. Use the sample information to construct a 95% confidence interval estimate for the population mean.

99 102 95 97 109 97 110 102 95 108 98 97
The 95% confidence interval is from $_ to $_?
(round to two decimal places as needed. Use ascending order)

Solutions

Expert Solution

Solution :

Given that,

Point estimate = sample mean = = 100.75

sample standard deviation = s = 5.46

sample size = n = 12

Degrees of freedom = df = n - 1 = 12 - 1 = 11

t /2,df = t0.025,11 = 2.201

Margin of error = E = t/2,df * (s /n)

= 2.201 * ( 5.46/ 12)

Margin of error = E = 3.47

The 95% confidence interval estimate of the population mean is,

- E < < + E

100.75 - 3.47 < < 100.75 + 3.45

97.28 < < 104.22

(97.28 , 104.22)


Related Solutions

2 - A random sample of n = 12 values taken from a normally distributed population...
2 - A random sample of n = 12 values taken from a normally distributed population resulted in the sample values below. Use the sample information to construct a 98% confidence interval estimate for the population mean. 105 111 95 106 114 108 114 111 105 113 113 95
A random sample of size n is taken from a normally distributed population with a population...
A random sample of size n is taken from a normally distributed population with a population standard deviation (σ ) of 11.6. The sample mean (x) is 44.6. Construct a 99% confidence interval about µ with a sample size of 26.
A random sample of nequals9 values taken from a normally distributed population with a population variance...
A random sample of nequals9 values taken from a normally distributed population with a population variance of 16 resulted in the sample values shown below. Use the sample values to construct a 95​% confidence interval estimate for the population mean. 54 45 55 44 44 52 47 59 50 The 95​% confidence interval is -------.------- ​(Round to two decimal places as needed. Use ascending​ order.)
A simple random sample of 25 items from a normally distributed population resulted in a sample...
A simple random sample of 25 items from a normally distributed population resulted in a sample mean of 80 and a sample standard deviation of s=7.5. Construct a 95% confidence interval for the population mean.
A) Suppose a random sample of size 22 is taken from a normally distributed population, and...
A) Suppose a random sample of size 22 is taken from a normally distributed population, and the sample mean and variance are calculated to be x¯=5.26 and s2=0.5respectively. Use this information to test the null hypothesis H0:μ=5 versus the alternative hypothesis HA:μ>5. a) What is the value of the test statistic t, for testing the null hypothesis that the population mean is equal to 5? Round your response to at least 3 decimal places. b) The P-value falls within which...
A random sample of 11 observations taken from a population that is normally distributed produced a...
A random sample of 11 observations taken from a population that is normally distributed produced a sample mean of 42.4 and a standard deviation of 8. Find the range for the p-value and the critical and observed values of t for each of the following tests of hypotheses using, α=0.01. Use the t distribution table to find a range for the p-value. Round your answers for the values of t to three decimal places. a. H0: μ=46 versus H1: μ<46....
A random sample of size 18 taken from a normally distributed population revealed a sample mean...
A random sample of size 18 taken from a normally distributed population revealed a sample mean of 100 and a sample variance of 49. The 95% confidence interval for the population mean would equal: a)93.56 - 103.98 b)97.65 – 107.35 c)95.52 -104.65 d)96.52 – 103.48
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found to be 115​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct an 80​% confidence interval about mu if the sample​ size, n, is 12. ​(b) Construct an 80​% confidence interval about mu if the sample​ size, n, is 27. ​(c) Construct a 98​% confidence interval about mu if the sample​ size, n,...
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar is found to be 112, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct a 95% confidence interval about μ if the sample​ size, n, is 26. ​(b) Construct a 95​% confidence interval about μ if the sample​ size, n, is 17. ​(c) Construct an 80​% confidence interval about μ if the sample​ size, n,...
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbarx​, is found to be 106106​, and the sample standard​ deviation, s, is found to be 1010. ​(a) Construct aa 9595​% confidence interval about muμ if the sample​ size, n, is 1111. ​(b) Construct aa 9595​% confidence interval about muμ if the sample​ size, n, is 2929. ​(c) Construct aa 9999​% confidence interval about muμ if the sample​ size, n,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT