Question

In: Accounting

An individual's utility function is U= (X+1)0.5 (Y+2)0.5

An individual's utility function is

U= (X+1)0.5 (Y+2)0.5

(a) By implicit differentiation, find the slope of any indifference curve and show that it is given by the ratio of marginal utilities of the two goods.

(b) Find the indifference curve for U= 6 and show that it is negatively sloped and convex. Does the indifference curve cut the axes? What does this imply about this individual's tastes?

Solutions

Expert Solution

a)

Now we have the slope of the indifference curve, we term as the marginal rate of substitution (MRS) as,

 

MRS = MUx/MUy

         = 0.5(X+1)-½(Y+1)½/0.5(X+1)½(Y+1)-½

 

Therefore we have,

 

MRS = (Y+1)/(X+1)

 

 

b)

Now we know that,

MRS = - dY/dX = (Y+1)/(X+1)

So, dY/dX = - (Y+1)/(X+1)

 

Hence is negatively sloped.

 

Now we have,

d²Y/dX² = (Y+1)/(X+1)² > 0

 

Hence is convex and here if X = 0 we have Y ≠0 and vice-versa which implies the fact that these two goods aren't complements.


a) MRS = (Y+1)/(X+1)

b) Hence is negatively sloped.

Related Solutions

Given the utility function U ( X , Y ) = X 1 3 Y 2...
Given the utility function U ( X , Y ) = X 1 3 Y 2 3, find the absolute value of the MRS when X=10 and Y=24. Round your answer to 4 decimal places.
1: Utility U(x, y) = x^0.5 y^0.5 is given by Income I = 1000. Price of...
1: Utility U(x, y) = x^0.5 y^0.5 is given by Income I = 1000. Price of x is px =10 and price of y is py = 20 1 The price of x increases from p0x = 10 to p1x = 20. Calculate the 1. New Demand for x and y 3 Obtain the demand for x and y at income I1 and NEW prices p1x = 20, py =20 4 Obtain the substitution and income effect 5 What is...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy + 2,000. Tammy’s utility function is U(x, y) = xy(1 - xy). Oral’s utility function is -1/(10 + xy. Billy’s utility function is U(x, y) = x/y. Pat’s utility function is U(x, y) = -xy. a. No two of these people have the same preferences. b. They all have the same preferences except for Billy. c. Jim, Jerry, and Pat all have the same...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
Esther consumes goods X and Y, and her utility function is      U(X,Y)=XY+Y For this utility function,...
Esther consumes goods X and Y, and her utility function is      U(X,Y)=XY+Y For this utility function,      MUX=Y      MUY=X+1 a. What is Esther's MRSXY? Y/(X + 1) X/Y (X + 1)/Y X/(Y + 1) b. Suppose her daily income is $20, the price of X is $4 per unit, and the price of Y is $1 per unit. What is her best choice?      Instructions: Enter your answers as whole numbers.      X =      Y =      What is Esther's utility when her...
Your utility function over x and y is U ( x , y ) = l...
Your utility function over x and y is U ( x , y ) = l n ( x ) + 0.25 y. Your income is $20. You don’t know the prices of x or y so leave them as variables (p x and p y). a) (8 points) Find x*, your demand function for x. Find y*, your demand function for y. b) (10 points) Find the cross-price elasticity of demand for x (E x ∗ , p y:...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x and y are the quantities of the good X and good Y consumed, respectively. The consumer's income is 400. (a) What is the demanded bundle when the price of good X is 10 and the price of good Y is 10? (b) Redo part (a) when the price of good X is doubled? (c) Redo part (a) when the price of good Y is...
Suppose an individual has the following utility function: U(x, y) = −4(x − 5.5)^2 − 2(y...
Suppose an individual has the following utility function: U(x, y) = −4(x − 5.5)^2 − 2(y − 3.5)^2 Further assume that the price of good x, px = $6, the price of good y, py = $8, and the individual has an income m = $65 a) Draw an indifference curve (one IC is enough) that represents this person’s preferences. Please label the graph properly including values for x and y. b) Intuitively, and without formally solving, can you guess...
Suppose an individual has the following utility function: U(x, y) = −4(x − 5.5)^2 − 2(y...
Suppose an individual has the following utility function: U(x, y) = −4(x − 5.5)^2 − 2(y − 3.5)^2 Further assume that the price of good x, px = $6, the price of good y, py = $8, and the individual has an income m = $65 a) Draw an indifference curve (one IC is enough) that represents this person’s preferences. Please label the graph properly including values for x and y. b) Intuitively, and without formally solving, can you guess...
Suppose an individual has the following utility function: U(x, y) = −4(x − 5.5)^2 − 2(y...
Suppose an individual has the following utility function: U(x, y) = −4(x − 5.5)^2 − 2(y − 3.5)^2 Further assume that the price of good x, px = $6, the price of good y, py = $8, and the individual has an income m = $65 a) Draw an indifference curve (one IC is enough) that represents this person’s preferences. Please label the graph properly including values for x and y. b) Intuitively, and without formally solving, can you guess...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT