In: Finance
Sarah secured a bank loan of $155,000 for the purchase of a
house. The mortgage is to be amortized through monthly payments for
a term of 15 years, with an interest rate of 3%/year compounded
monthly on the unpaid balance. She plans to sell her house in 5
years. How much will Sarah still owe on her house? (Round your
answer to the nearest cent.)
EMI :
EMI = Loan / PVAF (r%, n)
PVAF = SUm [ PVF(r%, n) ]
PVF(r%, n) = 1 / ( 1 + r)^n
r = Int rate per period
n = No. of periods
How to calculate PVAF using Excel:
=PV(Rate,NPER,-1)
Rate = Disc Rate
NPER = No.of periods
Particulars | Amount |
Loan Amount | $ 1,55,000.00 |
Int rate per Month | 0.2500% |
No. of Months | 180 |
EMI = Loan Amount / PVAF (r%, n)
Where r is Int rate per Month & n is No. of Months
= $ 155000 / PVAF (0.0025 , 180)
= $ 155000 / 144.8055
= $ 1070.4
Particulars | Amount |
Loan Amount | $ 1,55,000.00 |
Int rate per Month | 0.2500% |
No. of Months | 180 |
Outstanding Bal after | 60 |
EMI | $ 1,070.40 |
Payments Left | 120 |
Outstanding Bal = Instalment * [ 1 - ( 1 + r )^ - n ] / r
= $ 1070.4 * [ 1 - ( 1 + 0.0025 ) ^ - 120 ] / 0.0025
= $ 1070.4 * [ 1 - ( 1.0025 ) ^ - 120 ] / 0.0025
= $ 1070.4 * [ 1 - 0.741096 ] / 0.0025
= $ 1070.4 * [ 0.258904 ] / 0.0025
= $ 110852.34
r = Int Rate per period
n = Balance No. of periods
Amount still owede after 5 Years is $ 110852.34
Amortization Table:
Period | Opening Bal | EMI | Int | Principal Repay | Closing Outstanding |
1 | $ 1,55,000.00 | $ 1,070.40 | $ 387.50 | $ 682.90 | $ 1,54,317.10 |
2 | $ 1,54,317.10 | $ 1,070.40 | $ 385.79 | $ 684.61 | $ 1,53,632.49 |
3 | $ 1,53,632.49 | $ 1,070.40 | $ 384.08 | $ 686.32 | $ 1,52,946.17 |
4 | $ 1,52,946.17 | $ 1,070.40 | $ 382.37 | $ 688.04 | $ 1,52,258.13 |
5 | $ 1,52,258.13 | $ 1,070.40 | $ 380.65 | $ 689.76 | $ 1,51,568.38 |
6 | $ 1,51,568.38 | $ 1,070.40 | $ 378.92 | $ 691.48 | $ 1,50,876.90 |
7 | $ 1,50,876.90 | $ 1,070.40 | $ 377.19 | $ 693.21 | $ 1,50,183.69 |
53 | $ 1,17,128.02 | $ 1,070.40 | $ 292.82 | $ 777.58 | $ 1,16,350.43 |
54 | $ 1,16,350.43 | $ 1,070.40 | $ 290.88 | $ 779.53 | $ 1,15,570.91 |
55 | $ 1,15,570.91 | $ 1,070.40 | $ 288.93 | $ 781.47 | $ 1,14,789.43 |
56 | $ 1,14,789.43 | $ 1,070.40 | $ 286.97 | $ 783.43 | $ 1,14,006.01 |
57 | $ 1,14,006.01 | $ 1,070.40 | $ 285.02 | $ 785.39 | $ 1,13,220.62 |
58 | $ 1,13,220.62 | $ 1,070.40 | $ 283.05 | $ 787.35 | $ 1,12,433.27 |
59 | $ 1,12,433.27 | $ 1,070.40 | $ 281.08 | $ 789.32 | $ 1,11,643.95 |
60 | $ 1,11,643.95 | $ 1,070.40 | $ 279.11 | $ 791.29 | $ 1,10,852.66 |
61 | $ 1,10,852.66 | $ 1,070.40 | $ 277.13 | $ 793.27 | $ 1,10,059.39 |
62 | $ 1,10,059.39 | $ 1,070.40 | $ 275.15 | $ 795.25 | $ 1,09,264.14 |
Pls do rate, if the answer is correct and comment, if any further assistance is required.