Question

In: Biology

When can a mutation in only one of the alleles for a locus in a diploid...

When can a mutation in only one of the alleles for a locus in a diploid cell have devastating effects for that cell ?

Group of answer choices

When the mutation affects a haploinsufficient locus

When it causes a synonymous mutation in the protein region of a gene

When it completely abolishes the expression of the mutated allele

When it causes a nonsense mutation downstream of the stop codon of a protein-coding gene

When it affects the coding sequence of a gene that is not normally expressed in a that cell

Solutions

Expert Solution

When the mutation affects a haploinsufficient locus

Disorders caused by haploinsufficient genes usually have a dominant inheritance pattern.  Haploinsufficiency may arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it produces little or no gene product (often a protein). Although the other, standard allele still produces the standard amount of product, the total product is insufficient to produce the standard phenotype.

As far as the rest of the choices are concerned-

Synonymous mutation does not change the expression of gene i.e it codes for the same protein.

Abolishing the expression of mutated allele means that the mutated effect of the gene is reversed and the all is back to normal.

Nonsense mutation means the introduction of a stop codon but if this introduction is introduced downstream of the stop codon, it will produce no effect.

If the mutation affects the coding strand then the effect will not be devastating as the coding strand doe not codes for the gene expression, in fact, template strand codes for it.


Related Solutions

Assuming that a diploid genomic locus has 3-alleles, A, C and G, in a population of...
Assuming that a diploid genomic locus has 3-alleles, A, C and G, in a population of N individuals, in generation “t”, such that the frequency of each of these alleles are p, q, and r respectively, derive the two tenets of Hardy Weinberg Equilibrium after one generation of random mating.
Locus A has two alleles (A and a) while locus B has two alleles (B and...
Locus A has two alleles (A and a) while locus B has two alleles (B and b). The recombination frequency between locus A and locus B is 11%. A F1 heterozygote in trans configuration is mated with an aabb individual. What are the expected phenotypic percentages in the resulting progeny? Report your percentages to the tenths place and in the following format, replacing the "0.0" with your percentages.
If at a locus, three alleles in a population, such that the A allele is present...
If at a locus, three alleles in a population, such that the A allele is present at frequency 0.2, and C allele at frequency 0.4, after one generation of random mating in a population of size 100, the total number of A/A homozygotes will be: Select one: a. 3 b. 64 c. 4 d. 12 e. 24
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that are completely dominant/recessive. I. Come up with a general rule for the proportion of offspring expected to have the phenotype of all the recessive traits associated with X autosomal loci when fully heterozygous parents are crossed. II. Now, use that logic and provide the expected proportion of offspring that show recessive phenotype for 4 loci and the dominant phenotype the 5th locus when two...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that are completely dominant/recessive. I. Come up with a general rule for the proportion of offspring expected to have the phenotype of all the recessive traits associated with X autosomal loci when fully heterozygous parents are crossed. II. Now, use that logic and provide the expected proportion of offspring that show recessive phenotype for 4 loci and the dominant phenotype the 5th locus when two...
Q1. You have considered single locus and two locus (di) hybrid crosses for loci with alleles...
Q1. You have considered single locus and two locus (di) hybrid crosses for loci with alleles that are completely dominant/recessive. Come up with a general rule for the proportion of offspring expected to have the phenotype of all the recessive traits associated with X autosomal loci when fully heterozygous parents are crossed. Now, use that logic and provide the expected proportion of offspring that show recessive phenotype for 4 loci and the dominant phenotype the 5th locus when two fully...
An autosomal locus has alleles A and a. The frequency of individuals with the autosomal recessive...
An autosomal locus has alleles A and a. The frequency of individuals with the autosomal recessive phenotype is given. Which statements are true? (pick all that are true) HWE= Hardy-Weinberg equilibrium 1. We can calculate q=Freq(a) even if we don't assume Hardy-Weinberg Equilibrium 2. Even if we don't assume HWE, we can calculate the genotype frequencies that we weren't given 3. If we assume HWE, we can calculate the genotype frequencies that we weren't given 4. If we assume HWE,...
Create the genetic basis of a dog (e.g. a locus with two or more alleles) for...
Create the genetic basis of a dog (e.g. a locus with two or more alleles) for the phenotypic characteristic of the ear size Then create a brief scenario of how the evolutionary forces Genetic Drift, Gene Flow/Migration,Natural Selection)  might change the allele frequency and phenotype in the population For example the trait is tentacle length in octopi and TT octopi have long tentacles, tt octopi have short tentacles and Tt octopi have intermediate tentacles.  In the habitat in which these...
In a population of mice, coat color is controlled by a gene locus with two alleles,...
In a population of mice, coat color is controlled by a gene locus with two alleles, B and W. BB mice are brown, BW are tan and WW mice are white. What is this type of inheritance called? In this population there are 20 brown mice 15 tan mice and 30 white mice. Calculate p and q for this population where p = the allele frequency of B and q = the allele frequency of W.
There are 5 alleles at the BXR008 locus. In a large sample from the population from...
There are 5 alleles at the BXR008 locus. In a large sample from the population from which the suspects come, the frequencies of the alleles (starting from lowest to highest number of repeats) are;0.1,0.2,0.5,0.15,0.05; construct a table to calculate the matching probability and answer the following; Number of repeats Frequency 2 0.1 3 0.2 5 0.5 7 0.15 10 0.05 What is probability of the heterozygous genotype consisting of the least common allele for the BXR008 locus and the second...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT