Question

In: Statistics and Probability

Imagine an urn with two balls, each of which may be either white or black. One...

Imagine an urn with two balls, each of which may be either white or black. One of these balls is drawn and is put back before a new one is drawn. Suppose that in the first two draws white balls have been drawn. What is the probability of drawing a white ball on the third draw?

Solutions

Expert Solution

Answer:

Accepting it is similarly likely for each ball to white or dark, the likelihood is 1/4 that the two balls are white, 1/2 that one ball is white and one ball is dark, and 1/4 that the two balls are dark.

At that point, if the two balls are white, the likelihood that the two balls drawn are white is 1.

In the event that one ball is white and one is dark, the likelihood that the two balls drawn are white is 1/4

In the event that the two balls are dark, the likelihood of drawing 2 white balls is 0

Consequently,

P(both balls are white and the two balls drawn are white) = 1/4 * 1

= 1/4

P(one ball is white and one is dark and both drawn balls are white = 1/2 * 1/4

= 1/8

At that point,

P(2 white balls|both drawn are white) = (1/4) / (1/4 + 1/8)

= 2/3

P(1 dark and 1 white ball|both drawn are white) = (1/8) / (1/4 + 1/8)

= 1/3

At that point,

P(next ball is white) = P(2 white balls|both drawn are white)*P(next white given 2 white balls) + P(1 white and 1 dark ball|both drawn are white)*P(next white given 1 white and 1 renounce)

= (2/3)*1 + (1/3)*(1/2)

= 2/3 + 1/6

= 5/6


Related Solutions

Urn A contains four white balls and three black balls. Urn B contains six white balls...
Urn A contains four white balls and three black balls. Urn B contains six white balls and seven black balls. A ball is drawn from Urn A and then transferred to Urn B. A ball is then drawn from Urn B. What is the probability that the transferred ball was white given that the second ball drawn was white? (Round your answer to three decimal places.) I can't seem to figure this out! Please help! Thank you!
An urn contains two white and two black balls. A ball is drawn at random. If...
An urn contains two white and two black balls. A ball is drawn at random. If it is white, it is not replaced into the urn, otherwise it is replaced with another ball of the same color. The process is repeated. Find the probability that the third ball drawn is black.
An urn contains six white balls and four black balls. Two balls are randomly selected from...
An urn contains six white balls and four black balls. Two balls are randomly selected from the urn. Let X represent the number of black balls selected. (a) Identify the probability distribution of X. State the values of the parameters corresponding to this distribution. (b) Compute P(X = 0), P(X = 1), and P(X = 2). (c) Consider a game of chance where you randomly select two balls from the urn. You then win $2 for every black ball selected...
An urn contains n white balls and m black balls. ( m and n are both...
An urn contains n white balls and m black balls. ( m and n are both positive numbers.) (a) If two balls are drawn without replacement , what is the probability that both balls are the same color? (b) If two balls are drawn with replacement (i.e., One ball is drawn and it’s color recorded and then put back. Then the second ball is drawn.) What is the probability that both balls are the same color. (c) Show that the...
Suppose that there is a white urn containing two white balls and three red balls and...
Suppose that there is a white urn containing two white balls and three red balls and there is a red urn containing two white balls and four red balls. An experiment consists of selecting at random a ball from the white urn and then​ (without replacing the first​ ball) selecting at random a ball from the urn having the color of the first ball. Find the probability that the second ball is red.
1. Consider the following game: An urn contains 20 white balls and 10 black balls. If...
1. Consider the following game: An urn contains 20 white balls and 10 black balls. If you draw a white ball, you get $1, but if you draw a black ball, you loose $2. (a) You draw 6 balls out of the urn. What is the probability that you will win money? (b) How many balls should you draw in order to maximize the probability of winning? Hint: Use a computer.
An urn contains 11 white balls and 5 black balls. A simple random sample with replacement...
An urn contains 11 white balls and 5 black balls. A simple random sample with replacement (wr) of size: n = 2 is drawn from the urn. Calculate the probability that the sample contains one ball of each color. at least four decimal places.
An urn contains 12 red balls, 10 white balls, and 5 black balls. You select theee...
An urn contains 12 red balls, 10 white balls, and 5 black balls. You select theee balls from the urn at random without replacement. Compute the following probabilities: A) You do not select a ball of each color B)You select only res balls
An urn contains 7 black balls, 4 red balls, 3 white balls and 1 blue ball,...
An urn contains 7 black balls, 4 red balls, 3 white balls and 1 blue ball, and a player is to draw one ball. If it is black, he wins $1, if it is red, he wins $2, if it is white he wins $3 and if it is blue, he pay $25. a. Set up the empirical probability distribution for the random variable X, the payoff of the game. Game Payoff (X) Probability [P(X) $1 $2 $3 $4 b....
An urn contains 6 white and 10 black balls. The figure gives by the roll of...
An urn contains 6 white and 10 black balls. The figure gives by the roll of a dice balance indicates the number of balls that will be drawn without delivery of the ballot box. Let A be the event defined by: A: all the balls drawn from the urn are white. What is the probability that the dice has delivered a 3 knowing that A has realized (Use Bayes' Law)?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT