Question

In: Computer Science

Use the Extended Euclid's Algorithm to solve ƒ-1  for 8 mod 11

Use the Extended Euclid's Algorithm to solve ƒ-1  for 8 mod 11

Solutions

Expert Solution

In the given problem  F^-1 means we have to find the multiplicative inverse of 8 mod 11 also Ii have added a way out to check my answer in the last. I have solved the problem step by step using the euclid's algorithm in the most possible easiest way. Hope you like my answer and please kindly put a thumbs up if u like my work.Thank you very much.


Related Solutions

1. Use the Extended Euclid's Algorithm to solve ƒ-1 for 8 mod 11 2. Use the...
1. Use the Extended Euclid's Algorithm to solve ƒ-1 for 8 mod 11 2. Use the max function to calculate max3(x, y, z) if x = 2, y = 6, z = 5. Show your work!
1. Use backward substitution to solve: x=8 (mod 11) x=3 (mod 19)
  1. Use backward substitution to solve: x=8 (mod 11) x=3 (mod 19) 2. Fine the subgroup of Z24 (the operation is addition) generates by the element 20. 3. Find the order of the element 5 in (z/7z)
use algorithm modular exponentiation to find 11^644 mod 645
use algorithm modular exponentiation to find 11^644 mod 645
a) Use Fermat’s little theorem to compute 52003 mod 7, 52003 mod 11, and 52003 mod 13.
  a) Use Fermat’s little theorem to compute 52003 mod 7,52003 mod 11, and 52003 mod 13. b) Use your results from part (a) and the Chinese remaindertheorem to find 52003 mod 1001. (Note that1001 = 7 ⋅ 11 ⋅ 13.)
Compute the following: (a) 13^2018 (mod 12) (b) 8^11111 (mod 9) (c) 7^256 (mod 11) (d)...
Compute the following: (a) 13^2018 (mod 12) (b) 8^11111 (mod 9) (c) 7^256 (mod 11) (d) 3^160 (mod 23)
Solve a system of equations: 1- 2x = 5 mod 15   3x = 1 mod 4...
Solve a system of equations: 1- 2x = 5 mod 15   3x = 1 mod 4 2- x = 5 mod 15 x = 2 mod 12 (Hint: Note that 15 and 12 are not relatively prime. Use the Chinese remainder theorem to split the last equation into equations modulo 4 and modulo 3)
We also discussed the use of the Extended Euclidian algorithm to calculate modular inverses. Use this...
We also discussed the use of the Extended Euclidian algorithm to calculate modular inverses. Use this algorithm to compute the following values. Show all of the steps involved. 9570-1(mod 12935) 550-1 (mod 1769)
a. Using the Euclidean Algorithm and Extended Euclidean Algorithm, show that gcd(99; 5) = 1 and...
a. Using the Euclidean Algorithm and Extended Euclidean Algorithm, show that gcd(99; 5) = 1 and find integers s1 and t1 such that 5s1 + 99t1 = 1. [Hint: You should find that 5(20) + 99(?1) = 1] b. Solve the congruence 5x 17 (mod 99) c. Using the Chinese Remainder Theorem, solve the congruence x 3 (mod 5) x 42 (mod 99) d. Using the Chinese Remainder Theorem, solve the congruence x 3 (mod 5) x 6 (mod 9)...
1. Show that 11,111,111 and 3,333,333 are relatively prime using the Extended Euclidean Algorithm.
  1. Show that 11,111,111 and 3,333,333 are relatively prime using the Extended Euclidean Algorithm. 2. Use the EEA to find the GCD of 6,327 and 10,101. 3. Find the additive inverse of 3,333,333 modulo 11,111,111. Verify. 4. Find the multiplicative inverse of 3,333,333 modulo 11,111,111.Verify. 5. What is the orbit of 3 in the group Z_7 under multiplication modulo 7? Is 3 a generator?
find a linear combination for gcd(259,313). use extended euclidean algorithm. what is inverse of 259 in...
find a linear combination for gcd(259,313). use extended euclidean algorithm. what is inverse of 259 in z subscript 313? what is inverse of 313 in z subscript 259?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT