Question

In: Math

find the area of the region bounded by the curves √ x + √y = 1...

find the area of the region bounded by the curves √ x + √y = 1 and the coordinate axis.

Solutions

Expert Solution

We draw the bounded region bounded by the curve and linens. Then evaluate the area of the region by using definite integral.


Related Solutions

a) Find the area of the region bounded by the line y = x and the...
a) Find the area of the region bounded by the line y = x and the curve y = 2 - x^2. Include a sketch. Find the volume of the solid created when rotating the region in part a) about the line x = 1, in two ways.
Sketch and find the area of the region bounded by the curves ?=?+? and ?=?2−?.
Sketch and find the area of the region bounded by the curves ?=?+? and ?=?2−?.
Find the centroid of the region bounded by the given curves. y=x^2 , x=y^2
Find the centroid of the region bounded by the given curves. y=x^2 , x=y^2
Find the area of the region bounded by the parabolas x = y^2 - 4 and...
Find the area of the region bounded by the parabolas x = y^2 - 4 and x = 2 - y^2 the answer is 8 sqrt(3)
A. Find the region bounded by the curves y = (x−3)^2 and y = 12−4x. Show...
A. Find the region bounded by the curves y = (x−3)^2 and y = 12−4x. Show all of your work. B. Find the equation of the tangent line to the curve 5x^2 −6xy + 5y^2 = 4 at the point (1,1) Show all of your work. Thanks
1. Find the volume of the region bounded by y = ln(x), y = 1, y...
1. Find the volume of the region bounded by y = ln(x), y = 1, y = 2, x = 0 and rotated about the y-axis. Which method will be easier for this problem? 2. Find the volume of the region bounded by y = 2x + 2, x = y2-2y and rotated about y = 2. Which method will be easier for this problem? NOTE: You do not need to integrate this problem, just set it up.
What is the area of the region bounded by given curves, x^2 + 4x - 2y + 2 = 0 and y = 0?
What is the area of the region bounded by given curves, x^2 + 4x - 2y + 2 = 0 and y = 0?  
9) R is the region bounded by the curves ? = x^3 , y=2x+4 , And...
9) R is the region bounded by the curves ? = x^3 , y=2x+4 , And the y-axis. a) Find the area of the region. b) Set up the integral you would use to find the volume of a solid that has R as the base and square cross sections perpendicular to the x-axis.
find the volume of the region bounded by y=sin(x) and y=x^2 revolved around y=1
find the volume of the region bounded by y=sin(x) and y=x^2 revolved around y=1
Use double integration to find the area in the first quadrant bounded by the curves y...
Use double integration to find the area in the first quadrant bounded by the curves y = sin x, y = cos x and the y-axis.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT