Question

In: Physics

A wedge of mass M rests on a rough horizontal surface with coefficient of friction µ....

A wedge of mass M rests on a rough horizontal surface with coefficient of friction µ. The face of the wedge is a smooth plane inclined at an angle θ to the horizontal. A mass A hangs from a light string which passes over a smooth peg at the upper end of the wedge and attaches to a mass B which slides without friction on the face of the wedge.

(i) Find the accelerations for the masses A and B, and the tension in the string when µ is very large.
(ii) Find the smallest coefficient of friction for which the wedge will remain at rest.

Solutions

Expert Solution


Related Solutions

A block with the mass M slides with no friction on a horizontal surface (no friction)...
A block with the mass M slides with no friction on a horizontal surface (no friction) with speed x when it collides and sticks to the second block with also mass M that is attached to a third block with mass M via an ideal spring with spring constant k. Before collision, spring has its natural length and the blocks attached to it are at rest. Find an expression for the maximum kinetic energy of the third block post collision...
a)An object of mass ?m rests on a horizontal frictionless surface. A constant horizontal force of...
a)An object of mass ?m rests on a horizontal frictionless surface. A constant horizontal force of magnitude ?F is applied to the object. This force produces an acceleration: always only if ?F is larger than the weight of the object only while the object suddenly changes from rest to motion only if ?F is increasing choice A b)Now let there be friction between the surface and the object. If the object has a mass of 10 kg, and ??μs =...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the static case a.    What is the...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling at a speed v0 = 10.0m/s when it strikes a massless spring head-on (see figure) and compresses the spring a maximum distance X =0.25m. If the spring has stiffness constant k = 100. N/m, determine the coefficient of kinetic friction between block and surface.
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough....
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough. The coefficient of friction between the surface and the block is 0.5. Find the frictional force exerted by the plane on the block. (N)
Block B of mass 46.75-kg rests as shown on the upper surface of a 22.07-kg wedge A.
Block B of mass 46.75-kg rests as shown on the upper surface of a 22.07-kg wedge A. Assume that the system is released from rest and neglect the friction. Determine the acceleration of B. The magnitude of acceleration at B is _______ 
A textbook of mass 2.00kg rests on a frictionless, horizontal surface. A cord attached to the...
A textbook of mass 2.00kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.100m , to a hanging book with mass 2.98kg . The system is released from rest, and the books are observed to move a distance 1.15m over a time interval of 0.850s
A 50-kg block rests on a horizontal surface. The coefficient of static friction u(s) = 0.50....
A 50-kg block rests on a horizontal surface. The coefficient of static friction u(s) = 0.50. The coefficient of kinetic friction u(k) = 0.35. A force of 250 N is applied as shown (to the right). ***Please show all work and how to tell if accelerates or moves at constance velocity.*** A) The block remains at rest. B) The block moves and continues to move at a constant velocity. C) The block accelerates to the right. D) The block doesn't...
A textbook of mass 2.06 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 2.06 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.100 m , to a hanging book with mass 2.99 kg . The system is released from rest, and the books are observed to move a distance 1.24 m over a time interval of 0.750 s. a) What is the tension in the part of the cord attached to the textbook? b) What is the...
A block with a mass of m = 33 kg rests on a frictionless surface and...
A block with a mass of m = 33 kg rests on a frictionless surface and is subject to two forces acting on it. The first force is directed in the negative x-direction with a magnitude of F1 = 11.5 N. The second has a magnitude of F2 = 23 N and acts on the body at an angle θ = 22° measured from horizontal, as shown. write an expression for the component of net force, Fnet,x, in the x...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT