Question

In: Chemistry

Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g)+C(s)↽−−⇀CS2(g)?c=9.40 at 900...

Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g)+C(s)↽−−⇀CS2(g)?c=9.40 at 900 K How many grams of CS2(g) can be prepared by heating 15.6 mol S2(g) with excess carbon in a 7.05 L reaction vessel held at 900 K until equilibrium is attained?

mass of CS2(g) :

Solutions

Expert Solution

Balanced reaction is

S2(g)    + C(s)       ↔ CS2(g)

Initial [S2] = 2.213 M

(molarity = no. of mole / volume in liter

initial molarity of S2 = 15.6 / 7.05 = 2.213 M)

Kc = 9.40

Make ICE table to calculate equilibrium concentration of reactant and product.

Concentration

S2 (g)

CS2 (g)

Initial concentration

2.213 M

0

Change in concentration

-X

+X

Equilibrium concentration

2.213 –X

X

Kc = [CS2] / [S2]

Substitute value in above equation

9.40 = (X) / (2.213 - X )

(9.40) x (2.213 - X ) = X

20.8022 - 9.40 X = X

20.8022 = X + 9.40 X

10.40 X = 20.8022

X = 20.8022 / 10.40

X = 2

Equilibrium concentration of CS2 = X = 2 M

No. of moles = molarity X volume in liter

moles of CS2 at equilibrium = 2 X 7.05 = 14.10 mole

molar mass of CS2 = 76.139 g/mol

mass of compound in gm = no. of moles X molar mass

Gm of CS2 = 14.10 X 76.139 = 1073.56 gm

Mass of CS2 = 1073.56 gm


Related Solutions

Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g)+C(s)−⇀↽−CS2(g)Kc=9.40 at 900...
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g)+C(s)−⇀↽−CS2(g)Kc=9.40 at 900 KS2(g)+C(s)↽−−⇀CS2(g)Kc=9.40 at 900 K How many grams of CS2(g)CS2(g) can be prepared by heating 16.5 mol S2(g)16.5 mol S2(g) with excess carbon in a 9.40 L9.40 L reaction vessel held at 900 K until equilibrium is attained? mass of CS2(g)CS2(g):
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g)+C(s)↽−−⇀CS2(g) ?c=9.40 at...
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g)+C(s)↽−−⇀CS2(g) ?c=9.40 at 900 K How many grams of CS2(g) can be prepared by heating 9.66 mol S2(g) with excess carbon in a 5.85 L reaction vessel held at 900 K until equilibrium is attained? mass of CS2(g) :
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g) +C(s) <===>...
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g) +C(s) <===> CS2(g). Kc=9.40 at 900k How many grams of CS2(g) can be prepared by heating 12.6 moles of S2(g) with excess carbon in a 6.95 L reaction vessel held at 900 K until equilibrium is attained?
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g) + C(s)...
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2(g) + C(s) <---> CS2(g) How many grams of CS2(g) can be prepared by heating 21.0 moles of S2(g) with excess carbon in a 9.15 L reaction vessel held at 900 K until equilibrium is attained?
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2 (g) +...
Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is S2 (g) + C (s) <----> CS2 (g)     Kc=9.40 at 900K How many grams of CS2(g) can be prepared by heating 12.4 moles of S2(g) with excess carbon in a 7.20 L reaction vessel held at 900 K until equilibrium is attained?
1. The decomposition reaction of carbon disulfide, CS2, to carbon monosulfide, CS, and sulfur is first...
1. The decomposition reaction of carbon disulfide, CS2, to carbon monosulfide, CS, and sulfur is first order with k = 2.8x10-7 s -1 at 1000˚C. CS2....> CS + S a) What is the half life of this reaction at 1000˚C? b) How many days would pass before a 2.00 g sample of CS2 had decomposed to the extent that 0.75 g of CS2 remains? c) Refer to part b). How many grams of CS would be present after this length...
Carbon disulfide and chlorine react according to the following equation: CS2(g) + 3Cl2(g) S2Cl2(g) + CCl4(g)...
Carbon disulfide and chlorine react according to the following equation: CS2(g) + 3Cl2(g) S2Cl2(g) + CCl4(g) When 2.94 mol of CS2 and 5.60 mol of Cl2 are placed in a 2.00-L container and allowed to come to equilibrium, the mixture is found to contain 0.580 mol of CCl4. How many moles of Cl2 are present at equilibrium?
Nitrous oxide, N2O(g), reacts with carbon disulfide, CS2(g) according to the equation below. When performed in...
Nitrous oxide, N2O(g), reacts with carbon disulfide, CS2(g) according to the equation below. When performed in a constant volume bomb calorimeter with a heat capacity of 8.775 kJ °C–1 , the temperature of the calorimeter rises from 22.5 °C to 29.1 °C and forms 2.48 g of sulfur, S8. Determine the molar internal energy, ∆U, and the molar enthalpy, ∆H (both in kJ mol-1 ) of the following reaction at 25.0 °C. 3 N2O(g) + CS2(l) ® 3 N2(g) +...
Carbon disulfide, CS2, can be obtained from coke (C) and sufur dioxide (SO2): 3C + 2...
Carbon disulfide, CS2, can be obtained from coke (C) and sufur dioxide (SO2): 3C + 2 SO2 CS2 + CO2 If the actual yield is 78.9% of the theoretical yield, what mass of coke is needed to produce 786 g of CS2?
The reaction between sulfur gas (S2) and carbon (C) at high temperatures (900C) results in the...
The reaction between sulfur gas (S2) and carbon (C) at high temperatures (900C) results in the formation of carbon disulfide (CS2). The reaction is: C(s) + S2(g) = CS2(g). What is the concentration (in moles in reaction chamber) of CS2(g) at equilibrium if 3.00 moles of S2(g) and excess carbon are initially added to the 1.00 L reaction chamber? The Keq for this reaction is 3.50.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT