In: Statistics and Probability
The general fund budget (in billions of dollars) for a U.S. state for 1988 (period 1) to 2011 (period 24) follows.
| Year | Period | Budget ($ billions) |
|---|---|---|
| 1988 | 1 | 3.03 |
| 1989 | 2 | 3.29 |
| 1990 | 3 | 3.56 |
| 1991 | 4 | 4.31 |
| 1992 | 5 | 4.46 |
| 1993 | 6 | 4.61 |
| 1994 | 7 | 4.65 |
| 1995 | 8 | 5.15 |
| 1996 | 9 | 5.34 |
| 1997 | 10 | 5.66 |
| 1998 | 11 | 6.11 |
| 1999 | 12 | 6.20 |
| 2000 | 13 | 6.58 |
| 2001 | 14 | 6.75 |
| 2002 | 15 | 6.56 |
| 2003 | 16 | 6.88 |
| 2004 | 17 | 7.08 |
| 2005 | 18 | 7.65 |
| 2006 | 19 | 8.38 |
| 2007 | 20 | 8.57 |
| 2008 | 21 | 8.76 |
| 2009 | 22 | 8.43 |
| 2010 | 23 | 8.33 |
| 2011 | 24 | 8.76 |
(b)Develop a linear trend equation for this time series to forecast the budget (in billions of dollars). (Round your numerical values to three decimal places.)
Tt = ____?______
(c)What is the forecast (in billions of dollars) for period 25? (Round your answer to two decimal places.)
$___?_____ billion
b.
| X - Mx | Y - My | (X - Mx)2 | (X - Mx)(Y - My) |
| -11.5 | -3.1825 | 132.25 | 36.5988 |
| -10.5 | -2.9225 | 110.25 | 30.6863 |
| -9.5 | -2.6525 | 90.25 | 25.1988 |
| -8.5 | -1.9025 | 72.25 | 16.1713 |
| -7.5 | -1.7525 | 56.25 | 13.1438 |
| -6.5 | -1.6025 | 42.25 | 10.4163 |
| -5.5 | -1.5625 | 30.25 | 8.5937 |
| -4.5 | -1.0625 | 20.25 | 4.7813 |
| -3.5 | -0.8725 | 12.25 | 3.0538 |
| -2.5 | -0.5525 | 6.25 | 1.3813 |
| -1.5 | -0.1025 | 2.25 | 0.1537 |
| -0.5 | -0.0125 | 0.25 | 0.0062 |
| 0.5 | 0.3675 | 0.25 | 0.1838 |
| 1.5 | 0.5375 | 2.25 | 0.8063 |
| 2.5 | 0.3475 | 6.25 | 0.8688 |
| 3.5 | 0.6675 | 12.25 | 2.3363 |
| 4.5 | 0.8675 | 20.25 | 3.9038 |
| 5.5 | 1.4375 | 30.25 | 7.9063 |
| 6.5 | 2.1675 | 42.25 | 14.0888 |
| 7.5 | 2.3575 | 56.25 | 17.6813 |
| 8.5 | 2.5475 | 72.25 | 21.6538 |
| 9.5 | 2.2175 | 90.25 | 21.0663 |
| 10.5 | 2.1175 | 110.25 | 22.2338 |
| 11.5 | 2.5475 | 132.25 | 29.2963 |
| SS: 1150 | SP: 292.21 |
Sum of X = 300
Sum of Y = 149.1
Mean X = 12.5
Mean Y = 6.2125
Sum of squares (SSX) = 1150
Sum of products (SP) = 292.21
Regression Equation = ŷ = bX + a
b = SP/SSX = 292.21/1150 = 0.254
a = MY - bMX = 6.21 - (0.25*12.5) = 3.036
ŷ = 0.254X + 3.036
c. For x=25, ŷ = (0.254*25) + 3.036=9.39