In: Finance
You purchased a new house for $200,000 and financed the entire purchase with a $200,000 mortgage, payable monthly over 30 years at a yearly rate of 5.5%. How much do you owe on this house today after making 4 years of monthly payments?
Step 1: | Monthly payment | |||||
EMI = [P x R x (1+R)^N]/[(1+R)^N-1] | ||||||
Where, | ||||||
EMI= Equal Monthly Payment | ||||||
P= Loan Amount | ||||||
R= Interest rate per period =5.5%/12 =0.4583333% | ||||||
N= Number of periods =30*12 =360 | ||||||
= [ $200000x0.004583333 x (1+0.004583333)^360]/[(1+0.004583333)^360 -1] | ||||||
= [ $916.6666( 1.004583333 )^360] / [(1.004583333 )^360 -1 | ||||||
=$1135.58 | ||||||
Step 2: | Loan amount after 4 years monthly payment done | |||||
Present Value Of An Annuity | ||||||
= C*[1-(1+i)^-n]/i] | ||||||
Where, | ||||||
C= Cash Flow per period | ||||||
i = interest rate per period | ||||||
n=number of period | ||||||
= $1135.58[ 1-(1+0.0045833333)^-312 /0.0045833333] | ||||||
= $1135.58[ 1-(1.0045833333)^-312 /0.0045833333] | ||||||
= $1135.58[ (0.7599) ] /0.0045833333 | ||||||
= $188,277 | ||||||
Correct Answer =$188277 | ||||||