Question

In: Physics

A solid cylinder is mounted above the ground with its axis of rotation oriented horizontally. A...

A solid cylinder is mounted above the ground with its axis of rotation oriented horizontally. A rope is wound around the cylinder and its free end is attached to a block of mass 75.5 kg that rests on a platform. The cylinder has a mass of 205 kg and a radius of 0.350 m. Assume that the cylinder can rotate about its axis without any friction and the rope is of negligible mass. The platform is suddenly removed from under the block. The block falls down toward the ground and as it does so, it causes the rope to unwind and the cylinder to rotate.

(A) What is the angular acceleration, in rad/s2, of the cylinder?

(B)How many revolutions does the cylinder make in 5 s?

(C) How much of the rope, in meters, unwinds in this time interval?

Solutions

Expert Solution


Related Solutions

A kite 75 ft above the ground moves horizontally at a rate of 12 ft/s. At...
A kite 75 ft above the ground moves horizontally at a rate of 12 ft/s. At what rate in ft/s is the angle between the string (diagonal) and horizontal decreasing when 200 ft of string has been let out?
You launch a projectile horizontally from a building 29.5 m above the ground at another building...
You launch a projectile horizontally from a building 29.5 m above the ground at another building 40.6 m away from the first building. The projectile strikes the second building 14.0 m above the ground. What was the projectile s launch speed? 22.84 m/s 16.56 m/s 24.03 m/s 30.04 m/s
1. An infinitely long non-conducting right-circular cylinder of radius a, oriented concentrically with the z-axis, carries...
1. An infinitely long non-conducting right-circular cylinder of radius a, oriented concentrically with the z-axis, carries uniform charge density ?0. It is surrounded concentrically by an infinite long grounded right-circular conducting cylindrical shell of inner radius b and outer radius c. Ground potential is zero. (a) (4 points) What is the linear charge density (charge per unit length) ? of the inner nonconducting cylinder. (b) (4 points) What are the linear charge densities (charge per unit length) ? on the...
An infinitely long solid insulating cylinder of radius a = 2.1cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2.1 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ  = 27μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.9 cm, and outer radius c = 17.9 cm. The conducting shell has a linear charge density λ = -0.36μC/m.1 What is Ey(R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 2.1cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2.1 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ  = 27μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.9 cm, and outer radius c = 17.9 cm. The conducting shell has a linear charge density λ = -0.36μC/m.1 What is Ey(R), the y-component of the electric field at point...
A tennis ball is it at ground level. The ball reaches its maximum height above the...
A tennis ball is it at ground level. The ball reaches its maximum height above the ground level 1 sec. after being hit. Then 0.9 seconds after reaching its maximum height, the ball barely clears the net that is 3 m from where the tennis ball was hit. Assume the ground is level. How high is the net?  How far beyond the net does the tennis ball strike the ground?
A dielectric cylinder of permitivity ε rotates around its axis with angular velocity ω. If it...
A dielectric cylinder of permitivity ε rotates around its axis with angular velocity ω. If it is inside a uniform magnetic field B parallel yo the cylinder's axis, find the polarización charge in the cylinder
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 25 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.5 cm, and outer radius c = 17.5 cm. The conducting shell has a linear charge density λ = -0.41μC/m. 1. What is V(P) – V(R), the potential difference between...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density p = 29 uC/m^3. Concentric with the cylinder is cylindrical conduction shell of inner radius b = 10.2cm and outer radius c= 12.2 cm. The conducting shell has a linear charge density = -0.33 uC/m. 1. What is Ey (R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 45 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 17.9 cm, and outer radius c = 19.9 cm. The conducting shell has a linear charge density λ = -0.31μC/m. 1) What is Ey(R), the y-component of the electric field...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT