In: Math
Find equations of the tangent lines to the curve y = (x-1)/(x+1) that are parallel to the line x − 2y = 5.
Given: \(y=\frac{x-1}{x+1}\)
\(\frac{d y}{d x}=\frac{x+1-(x-1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}\)
So, \(\frac{2}{(x+1)^{2}}=\frac{1}{2}\)
or \(x^{2}+2 x-3=0\)
\((x-1)(x+3)=0\)
\(x=1,-3\)
For \(x=1, y=0\)
For \(x=-3, y=2\)
So, equation of tan gents:
\((y-0)=\frac{1}{2}(x-1)\)
\(\& \quad(y-2)=\frac{1}{2}(x+3)\)
\(x-2 y-1=0\)
\(\& \quad x-2 y+7=0\)