Question

In: Physics

The figure shows an 8.5 kg stone at rest on a spring. The spring is compressed...

The figure shows an 8.5 kg stone at rest on a spring. The spring is compressed 11 cm by the stone. (a) What is the spring constant? (b) The stone is pushed down an additional 32 cm and released.What is the elastic potential energy of the compressed spring just before that release? (c) What is the change in the gravitational potential energy of the stone–Earth system when the stone moves from the release point to its maximum height? (d) What is that maximum height, measured from the release point?

Solutions

Expert Solution


Related Solutions

a 100 kg student is compressed 50 cm on a spring with a spring constant of...
a 100 kg student is compressed 50 cm on a spring with a spring constant of k = 80,000 N/m. He is on top of a 10 m frictionless hill. He then is released from rest. He goes down to the bottom of the hill before sliding up a 30° frictionless hill. a. (8 pts) Find the speed of the student when he reaches the bottom of the hill. b. (9 pts) Find the distance D the student travels up...
The spring shown in the figure is compressed 52 cm and used to launch a 100...
The spring shown in the figure is compressed 52 cm and used to launch a 100 kg physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the 30∘ incline is 0.19 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. Part B How far up the incline does the student go? Express...
The figure shows a 100-kg block being released from rest from a height of 1.0 m.
The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach the floor. What is the mass of the other block? The pulley has no appreciable mass or friction. A. 60 kg B. 48 kg C. 54 kg D. 42 kg             The figure shows a 100 - kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach...
As shown below, a 100 kg student is compressed 50 cm on a spring with a...
As shown below, a 100 kg student is compressed 50 cm on a spring with a spring constant of k = 80,000 N/m. He is on top of a 10 m frictionless hill. He then is released from rest. He goes down to the bottom of the hill before sliding up a 30° frictionless hill. a. (8 pts) Find the speed of the student when he reaches the bottom of the hill. b. (9 pts) Find the distance D the...
Problem 2 A block of mass 1 kg is sitting on top of a compressed spring...
Problem 2 A block of mass 1 kg is sitting on top of a compressed spring of spring constant k = 300 N/m and equilibrium length 20 cm. Initially the spring is compressed 10 cm, and the block is held in place by someone pushing down on it with his hand. At t = 0, the hand is removed (this involves no work), the spring expands and the block flies upwards. (a)Draw a free-body diagram for the block while the...
3. An 8 kg stone rests on a vertical spring of force constant 785 N /...
3. An 8 kg stone rests on a vertical spring of force constant 785 N / m. The stone is pushed down about 30 cm and released. (a) Obtain the elastic potential energy of the compressed spring just before releasing it (b) Obtain the maximum height reached by the stone (c) Obtain the velocity just after it leaves the spring.
A 15.0 kg block is released from rest at point A in the figure below. The...
A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,300 N/m, and compresses the spring 0.200 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B...
the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in...
the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in SHM with a period of 18.00 ms. The position of the block is given by x = (0.600 cm) cos(ωt + π/2). Block 1 of mass 4.40 kg slides toward block 2 with a velocity of magnitude 7.80 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 4.50 ms. (The duration of the collision is...
In the figure, block 2 of mass 2.90 kg oscillates on the end of a spring...
In the figure, block 2 of mass 2.90 kg oscillates on the end of a spring in SHM with a period of 26.00 ms. The position of the block is given by x = (0.700 cm) cos(?t + ?/2). Block 1 of mass 5.80 kg slides toward block 2 with a velocity of magnitude 8.70 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 6.50 ms. (The duration of the collision...
A 72 kg man stands on a spring scale in an elevator. Starting from rest, the...
A 72 kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.2 m/s in 0.73 s. It travels with this constant speed for 5.0 s, undergoes a uniform negative acceleration for 1.2 s, and comes to rest. What does the spring scale register in each of the following time intervals? (a) before the elevator starts to move _____ N (b) during the first 0.73 s _____N (c) while...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT