In: Statistics and Probability
Suppose that student scores on creativity test are normally distributed. The mean of the test is 150 and the standard deviation is 23. Using a z-table (normal curve table), what percentage of students have z-scores a) below 1.63 b) above -0.41 Using a z-table, what scores would be the top and bottom raw score to find the c) middle 50% of students d) middle 10% of students Using a z-table, what is the minimum raw score a student can have on the creativity test and be in the top e) 35% f) 15%
Solution:
Given that,
mean = = 150
standard deviation = = 23
Using standard normal table,
a ) z = 1.63
Using z-score formula,
x = z * +
x = 1.63 * 23 + 150
x = 187.49
The top raw scores = 187.5
b ) z = -0.41
Using z-score formula,
x = z * +
x = -0.41 * 23 + 150
x = 140.57
The bottom raw scores = 140.6
c ) P(-z < Z < z) = 50%
P(Z < z) - P(Z < z) = 0.50
2P(Z < z) - 1 = 0.50
2P(Z < z ) = 1 + 0.50
2P(Z < z) = 1.50
P(Z < z) = 1.50 / 2
P(Z < z) = 0.75
z = -0.67 and z = 0.67
Using z-score formula,
x = z * +
x = -0.67 * 23 + 150
x = 134.59
x = z * +
x = 0.67 * 23 + 150
x = 165.41
d ) P(-z < Z < z) = 10%
P(Z < z) - P(Z < z) = 0.10
2P(Z < z) - 1 = 0.10
2P(Z < z ) = 1 + 0.10
2P(Z < z) = 1.10
P(Z < z) = 1.10 / 2
P(Z < z) = 0.55
z = -0.13 and z = 0.13
Using z-score formula,
x = z * +
x = -0.13 * 23 + 150
x = 147.01
x = z * +
x = 0.13 * 23 + 150
x = 152.99
e ) P( Z > z) = 35%
P(Z > z) = 0.35
1 - P( Z < z) = 0.35
P(Z < z) = 1 - 0.35
P(Z < z) = 0.65
z = 0.38
Using z-score formula,
x = z * +
x = 0.38 * 23 + 150
x =158.74
f ) P( Z > z) = 15%
P(Z > z) = 0.15
1 - P( Z < z) = 0.15
P(Z < z) = 1 - 0.15
P(Z < z) = 0.85
z =1.04
Using z-score formula,
x = z * +
x = 1.04 * 23 + 150
x =173.92