In: Accounting
Assume that ABC Corp. can only earn 3.5% on its investment. What sum does it now need to invest to meet its $10,000 / month cash needs for 72 months?
Case 1: | Present Value Of An Annuity | |||||
= C*[1-(1+i)^-n]/i] | ||||||
Where, | ||||||
C= Cash Flow per period | ||||||
i = interest rate per period | ||||||
n=number of period | ||||||
= $10000[ 1-(1+0.003875)^-36 /0.003875] | ||||||
= $10000[ 1-(1.003875)^-36 /0.003875] | ||||||
= $10000[ (0.13) ] /0.003875 | ||||||
= $335,412.81 | ||||||
Casse 2 : | Present Value Of An Annuity | |||||
= C*[1-(1+i)^-n]/i] | ||||||
Where, | ||||||
C= Cash Flow per period | ||||||
i = interest rate per period | ||||||
n=number of period | ||||||
= $10000[ 1-(1+0.003875)^-72 /0.003875] | ||||||
= $10000[ 1-(1.003875)^-72 /0.003875] | ||||||
= $10000[ (0.2431) ] /0.003875 | ||||||
= $627,231.18 | ||||||
Case 3 : | ||||||
Present Value Of An Annuity | ||||||
= C*[1-(1+i)^-n]/i] | ||||||
Where, | ||||||
C= Cash Flow per period | ||||||
i = interest rate per period | ||||||
n=number of period | ||||||
= $10000[ 1-(1+0.0029166667)^-72 /0.0029166667] | ||||||
= $10000[ 1-(1.0029166667)^-72 /0.0029166667] | ||||||
= $10000[ (0.1892) ] /0.0029166667 | ||||||
= $648,575.85 | ||||||