Question

In: Physics

Which of the following inertial reference frames are proper frames for the two events listed? Choose...

Which of the following inertial reference frames are proper frames for the two events listed? Choose all that apply.

RED FRAME: Event A happened at a different place than event B.

ORANGE FRAME: Event C happened at (-7 m, 3 m, 4 m) and event D happened at (-7 m, 3 m, 5 m).

YELLOW FRAME: The distance between where event E occurred and where event F occurred was 0 m.

GREEN FRAME: A rocket was traveling at a constant velocity when it passed through a stationary tunnel. Event G was the front of the rocket entering the tunnel and event H was the the front of the rocket leaving the tunnel.

BLUE FRAME: A stationary rocket was engulfed by a hollow cylinder that was moving at a constant velocity. Event J was the front of the rocket entering the cylinder and event K was the the front of the rocket leaving the cylinder.

Solutions

Expert Solution


Related Solutions

Two inertial frames of reference, denoted by S and S', are in uniform relative motion such...
Two inertial frames of reference, denoted by S and S', are in uniform relative motion such that the origin O' moves at constant velocity V = V0(êxcosβ + êysinβ) relstive to O. In frame S, a particle moves along the space curve prescribed by the vector position r = êx4(3t^2 – t^4) + êy(t^3+2t)+êz(2t^2 +3t)^2. (a) Find the velocity of the particle relative to O′. (b) Show explicitly that the acceleration of the particle is the same in both frames...
QUESTION 2 1.   Two people in different inertial reference frames are observing a ball as it...
QUESTION 2 1.   Two people in different inertial reference frames are observing a ball as it moves through the air. One person claims to observe the ball to go straight up and then straight down. The other person claims to observe the ball to move in a parabolic path. What can we say about these two claims? a.   These two claims are mutually incompatible. The ball follows only a single path. Either it goes in a straight line up and...
For the equations of motion to be correct, the coordinate reference frames must be inertial. Is...
For the equations of motion to be correct, the coordinate reference frames must be inertial. Is the geocentric-equatorial coordinate system, commonly used for spacecraft, a truly inertial reference frame? Why or why not? If not, why can we use it?
Consider two events, A and B. In an inertial reference frame S, event A occurs at...
Consider two events, A and B. In an inertial reference frame S, event A occurs at a time deltaT after event B, and event A occurs as positive x=0 and event B at x=L. From another reference frame S', it was observed that events A and B occur simultaneously. Given this information, what is the relative velocity of S' to S? Express answer in terms of the speed of light c, and the parameters given in the problem. (If you...
Outline how the constancy of the speed of light across all inertial reference frames contributes to...
Outline how the constancy of the speed of light across all inertial reference frames contributes to the stated consequence: If a very short pulse of light originates at space-time coordinates (x1,y1,z1,t1), the future spacetime coordinates of the pulse (x2,y2,z2,t2) obey the following relationship (x2-x1)^2+(y2-y1)^2+(z2-z1)^2-c^2(t2-t1)^2=0 and the same relationship holds for the pulse of light measured in any other inertial reference frame.
let us consider two inertial frames S and S'. The frame S' moves along the common...
let us consider two inertial frames S and S'. The frame S' moves along the common positive direction of the x and x' . Two events A and B occur at the origin of S with timer interval of 2 sec, I.e. xa=xB=0 and Delta t_AB=tA-tB=2s. the time interval Delta t'_AB measured in S' is 3 s. Now let us consider two events C and D occurring at the origin S'. if the time interval Delta t'_CD measured in S'...
In an inertial reference frame S, two objects A and B of equal rest mass m...
In an inertial reference frame S, two objects A and B of equal rest mass m collide head on with equal but opposite velocities 4c/5 and stick together to form a final object C. In a different inertial reference frame S’, one object A is seen to be initially at rest. (a) Determine the rest mass of the final object C by applying appropriate conservation laws in the S frame. (b) What is the velocity of the moving object B...
Two events are observed by inertial observer Stampy to occur a spatial distance of 15 c·s...
Two events are observed by inertial observer Stampy to occur a spatial distance of 15 c·s apart with the spatial coordinate of the second larger than the spatial coordinate of the first. Stampy also determines that the second event occurred 17 s after the first. According to inertial observer Philip moving along Stampy’s +x axis at unknown velocity v, the second event occurs 10 s after the first. (1 c·s = 1 light-second = unit of distance.) a) Given Philip...
Sketch and describe how a Pole Figure is constructed. Which reference frames are related in a...
Sketch and describe how a Pole Figure is constructed. Which reference frames are related in a Pole Figure
Design a carefully scaled and drawn Minkowski diagram depicting two reference frames P (x and t)...
Design a carefully scaled and drawn Minkowski diagram depicting two reference frames P (x and t) and Q (x' and t') with Q moving at a speed of 0.6c in the positive x-direction with respect to P. i) If event A occurs at x=1 and t=1 while event B occurs at x=1 t=2, determine the interval of time between these events as measured by an observer in Q. Suggest two other events and use them to demonstrate reciprocity of time...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT