Question

In: Chemistry

3) Give Lewis structures for the following. a) chlorine, Cl2 b) hydrogen iodide, HI c) chloroform,...

3) Give Lewis structures for the following. a) chlorine, Cl2 b) hydrogen iodide, HI c) chloroform, CHCl3 d) water, H2O i) phosphorus trichloride, PCl3 j) boron trifluoride, BF3 n) hydrogen peroxide, H2O2 o) hydroxide ion, OH- p) ammonium ion, NH4+ q) phosphate ion, PO43- r) nitrate ion, NO3-

Solutions

Expert Solution


Related Solutions

Draw the Lewis structures and VSEPR structures for the following molecules: I3 (iodide 3) , I3...
Draw the Lewis structures and VSEPR structures for the following molecules: I3 (iodide 3) , I3 - (iodide 3-) , and I3 +  (iodide 3+) . What is the electron pair structure around the central atom and what is the correct geometric term for each structure?
Chloroform, CHCl3, is formed by the following reaction: CH4(g) + 3 Cl2(g) → 3 HCl(g) +...
Chloroform, CHCl3, is formed by the following reaction: CH4(g) + 3 Cl2(g) → 3 HCl(g) + CHCl3 (g) Determine the enthalpy change for this reaction (ΔH°rxn), using the following: enthalpy of formation of CHCl3 (g), ΔH°f = – 103.1 kJ/mol                                 CH4(g) + 2 O2(g) → 2 H2O(l) + CO2(g)        ΔH°rxn = – 890.4 kJ/mol                                 2 HCl (g) → H2 (g) + Cl2(g)                              ΔH°rxn = + 184.6 kJ/mol                                 C (graphite) + O2(g) → CO2(g)                     ΔH°rxn = – 393.5 kJ/mol                                 H2 (g)...
Methane reacts with chlorine to produce methyl chloride and hydrogen chloride. CH4 + Cl2 → CH3Cl...
Methane reacts with chlorine to produce methyl chloride and hydrogen chloride. CH4 + Cl2 → CH3Cl + HCl Once formed, methyl chloride can be chlorinated in subsequent reactions to form methylene chloride (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4). In a methyl chloride production process a reactor is fed with methane and chlorine in a molar ratio of 5: 1 (methane: chlorine). In the process the chlorine is consumed in its entirety. The selectivity observed in the process is 4...
Hydrogen cyanide (HCN) is amphiprotic. Give its Lewis structure. Give the chemical formula and the Lewis...
Hydrogen cyanide (HCN) is amphiprotic. Give its Lewis structure. Give the chemical formula and the Lewis structure of its conjugate acid and its conjugate base. Explain the geometric structure of the conjugate acid using VSEPR theory. What is the hybridization of C and N in all of these species?
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2 (g) + 3 F2 (g)...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2 (g) + 3 F2 (g) → 2 ClF3 (g) A 1.65 L reaction vessel, initially at 298 K, contains chlorine gas at a partial pressure of 337 mmHg and fluorine gas at a partial pressure of 741 mmHg . What is the pressure of ClF3 in the reaction vessel after the reaction? Enter your answer numerically, in terms of mmHg.
Draw the Lewis structures for each of the following ions or molecules. For each, give (i)...
Draw the Lewis structures for each of the following ions or molecules. For each, give (i) the molecular shape, (ii) the electron pair geometry at the central atom, and (iii) the hybridization of the central atom. (a) H2Se (b) H2CO (C is the central atom) (c) BrF4 - (d) PF5 (e) SiF4
Hydrogen iodide gas decomposes into hydrogen gas and iodine gas at 453°C. If a 2.00 L...
Hydrogen iodide gas decomposes into hydrogen gas and iodine gas at 453°C. If a 2.00 L flask is filled with 0.200 mol of hydrogen iodide gas, 0.156 mol hydrogen iodide remains at equilibrium. What is the equilibrium constant, Kc, for the reaction at this temperature? 2 HI (g) ⇌ H2 (g) + I2 (g)
At 500 °C, hydrogen iodide decomposes according to 2HI(g)↽−−⇀H2(g)+I2(g)2HI(g)↽−−⇀H2(g)+I2(g) For HI(g)HI(g) heated to 500 °C in...
At 500 °C, hydrogen iodide decomposes according to 2HI(g)↽−−⇀H2(g)+I2(g)2HI(g)↽−−⇀H2(g)+I2(g) For HI(g)HI(g) heated to 500 °C in a 1.00 L reaction vessel, chemical analysis determined these concentrations at equilibrium: [H2]=0.400 M[H2]=0.400 M , [I2]=0.400 M[I2]=0.400 M , and [HI]=3.38 M[HI]=3.38 M . If an additional 1.00 mol of HI(g)HI(g) is introduced into the reaction vessel, what are the equilibrium concentrations after the new equilibrium has been reached? [HI]= [H2]= [I2]= Please help and show work!
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g) + 3 F2(g) --> 2...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g) + 3 F2(g) --> 2 ClF3(g) A 2.00-L reaction vessel, initially at 298 K, contains chlorine gas at a partial pressure of 337 mmHg and fluorine gas at a partial pressure of 729 mmHg. Identify the limiting reactant and deter- mine the theoretical yield of ClF3 in grams. I got 4.84g ClF3 for this problem, but the textbook answer is 2.84g. Can anyone tell me where I went wrong,...
Rate constants for the gas-phase decomposition of hydrogen iodide, 2 HI(g) → H2 (g) + I2...
Rate constants for the gas-phase decomposition of hydrogen iodide, 2 HI(g) → H2 (g) + I2 (g), are listed in the following table: Temperature (Celcius) k(M-1s-1) 283 3.52*10-7 356 3.02*10-5 393 2.19*10-4 427 1.16*10-3 508 3.95*10-2 (a) Find the activation energy (in kJ/mol) using all five data points. (b) Calculate Ea from the rate constants at 283 °C and 508 °C. (c) Given the rate constant at 283 °C and the value of Ea obtained in part (b), what is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT