In: Statistics and Probability
Summary statistics are given for independent simple
random samples from two populations. Use the pooled t-test to
conduct the required hypothesis test.
1 = 13, s 1 = 5, n 1 =
10,   2 = 21, s 2 =
4, n 2 = 14
Perform a left-tailed hypothesis test using a significance level of
α = 0.05.
| a | 
 Test statistic: t = -1.526526  | 
|
| b | 
 Test statistic: t = -0.916.916  | 
|
| c | 
 Test statistic: t = -4.355  | 
|
| d | 
 Test statistic: t = -4.355  | 
can you please show the math? thank u!
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 <   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   13.00  
           
   
standard deviation of sample 1,   s1 =   
5.00          
       
size of sample 1,    n1=   10  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   21.00  
           
   
standard deviation of sample 2,   s2 =   
4.00          
       
size of sample 2,    n2=   14  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
13.0000   -   21.0   =  
-8.00  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    4.4364  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
1.8369          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
-8.0000   -   0   ) /   
1.84   =   -4.355
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
22          
       
t-critical value , t* =       
-1.7171   (excel function: =t.inv(α,df)  
          
Decision:   | t-stat | > | critical value |, so,
Reject Ho          
           
p-value =       
0.000127   [ excel function: =T.DIST(t stat,df) ]
          
   
Conclusion:     p-value <α , Reject null
hypothesis          
       
   
Please revert back in case of any doubt.
Please upvote. Thanks in advance.