Question

In: Physics

A block of mass m1 = 6 kg on a rough 30°-inclined plane is connected to...

A block of mass m1 = 6 kg on a rough 30°-inclined plane is connected to a 4-kg mass (m2) by a string of negligible mass passing over a pulley shaped like a ring. The 2-kg pulley has radius 20 cm and rotates about its symmetry axis of rotation. The string causes the blocks and the pulley to rotate without slipping and without friction. The 6-kg block (m1) on the 30°slope is initially pressed against a spring near the bottom of a long rough incline, compressing the spring by 50 cm. The spring is not attached to the block and has a spring constant is 500 N/m. When the system is released, the spring returns to its equilibrium length as it projects the 6-kg block (m1) toward the top of the incline. Assume that the spring just loses contact with the block (m1) at the instant it returns to its equilibrium length. The coefficient of kinetic friction between the block (m1) and the surface of the incline is 0.2. By considering the conservation of energy and any other suitable methods: (a) Calculate the speed of the blocks at the instant the spring first returns to its equilibrium length. [v = 3.2 m/s] (b) What is the total angular momentum of the system when the spring first returns to its equilibrium length? [7.7 kg.m2/s] (c) By considering the total angular momentum of the system, find the rate of change of the angular momentum of the system after the blocks lose contact with the spring. [-0.08 m.N] (d) What is the net torque causing the angular acceleration of the system after the blocks lose contact with the spring? [-0.08 m.N]

Solutions

Expert Solution


Related Solutions

A block of mass m2 = 15 kg on a rough 30°-inclined plane is connected to...
A block of mass m2 = 15 kg on a rough 30°-inclined plane is connected to a 5-kg mass (m1) by a string of negligible mass passing over a pulley that is shaped like a disk. The 2-kg pulley has radius 15 cm and rotates about its symmetry axis of rotation. The string does not slip on the pulley and causes the pulley to rotate about a fixed horizontal axle through its center of mass. When this system is released...
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough....
A block of mass 5 kg rests on a 30° inclined plane. The surface is rough. The coefficient of friction between the surface and the block is 0.5. Find the frictional force exerted by the plane on the block. (N)
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ = 26.5° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.41 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
A 1.50-kg block is on a frictionless, 30 degrees inclined plane. The block is attached to...
A 1.50-kg block is on a frictionless, 30 degrees inclined plane. The block is attached to a spring (k = 40.0N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.40m/s. How far does it drop before coming to rest? (Assume the spring is unlimited in how far it...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
A 4 kg block is placed at the top of an inclined plane. The plane is...
A 4 kg block is placed at the top of an inclined plane. The plane is 2.5 meters long and inclined at 34°. The coefficient of kinetic friction between the block and plane is 0.27. The block slides the 2.0 meters down the ramp. What speed does it have at the bottom?
A block with mass m = 17.2 kg slides down an inclined plane of slope angle...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle 13.8o with a constant velocity. It is then projected up the same plane with an initial speed 4.05 m/s. How far up the incline will the block move before coming to rest?
E3. A block of mass 1.00 kg sits on an inclined plane as shown. (Figure 1)A...
E3. A block of mass 1.00 kg sits on an inclined plane as shown. (Figure 1)A force of magnitude 50.0 N is pulling the block up the incline. The coefficient of kinetic friction between the plane and the block is 0.500. The inclined plane makes an angle 10.0 degrees with the horizontal. What is the total work Wfric done on the block by the force of friction as the block moves a distance 6.00 mm down the incline? E12. On...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT