In: Statistics and Probability
A population of values has a normal distribution with
μ=100.3μ=100.3 and σ=68.6σ=68.6. You intend to draw a random sample
of size n=120n=120.
Find the probability that a sample of size n=120n=120 is randomly
selected with a mean between 103.4 and 118.5.
P(103.4 < M < 118.5) =
Enter your answers as numbers accurate to 4 decimal places. Answers
obtained using exact z-scores or z-scores rounded
to 3 decimal places are accepted.
µ =    100.3      
           
           
   
σ =    68.6      
           
           
   
n=   120      
           
           
   
we need to calculate probability for ,  
           
           
           
103.4   ≤ X ≤    118.5  
           
           
   
X1 =    103.4   ,    X2 =  
118.5          
           
          
           
           
   
Z1 =   (X1 - µ )/(σ/√n) = (   103.4  
-   100.3   ) / (   68.6  
/ √   120   ) =   0.495
Z2 =   (X2 - µ )/(σ/√n) = (   118.5  
-   100.3   ) / (   68.6  
/ √   120   ) =   2.906
          
           
           
   
P (   103.4   < X <   
118.5   ) =    P (   
0.50   < Z <    2.91   )
  
          
           
           
   
= P ( Z <    2.906   ) - P ( Z
<   0.495   ) =   
0.9982   -    0.6897   =
   0.3085  
..................
THANKS
PLEASE UPVOTE